

Copyright © CRESTA Consortium Partners 2014

D5.3.5	
 –	
 Remote	
 hybrid	
 rendering:	

final	
 tools	

WP5:	
 User	
 tools	

Due date: M30

Submission date: 31/03/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organisation USTUTT

Version: 1.0

Status Final

Author(s): Martin Aumüller (USTUTT), Markus Flatken (DLR), Timo Krappel
(USTUTT)

Reviewer(s) Alan Grey (EPCC), David Lecomber (ASL)

Dissemination level

PU PU - Public

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exascale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

0.1 03/03/2014 First version of the deliverable Martin Aumüller
(USTUTT)

0.2 24/03/2014 Improvements based on suggestions
by co-authors and reviewers

Martin Aumüller, Timo
Krappel (both USTUTT),
Markus Flatken (DLR),
Alan Grey (UEDIN),
David Lecomber (ASL)

0.3 26/03/2014 Corrections Martin Aumüller
(USTUTT)

1.0 31/03/2014 Final version of the deliverable

Martin Aumüller
(USTUTT), Markus
Flatken (DLR), Timo
Krappel (USTUTT)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 Executive	
 Summary	
 ...	
 1	

2	
 Overview	
 ...	
 2	

2.1	
 Glossary	
 of	
 Acronyms	
 ...	
 2	

3	
 Remote	
 Hybrid	
 Rendering	
 ..	
 3	

4	
 Implementation	
 of	
 Remote	
 Hybrid	
 Rendering	
 ...	
 4	

4.1	
 Implementation	
 Details	
 ..	
 4	

4.1.1	
 VncClient	
 Plug-­‐in	
 ..	
 4	

4.1.2	
 VncServer	
 Plug-­‐in	
 ...	
 4	

4.1.3	
 CompositorIceT	
 Plug-­‐in	
 ..	
 4	

4.1.4	
 Vistle	
 Ray	
 Caster	
 ...	
 5	

4.2	
 Obtaining	
 the	
 Software	
 ..	
 5	

4.2.1	
 COVISE	
 and	
 OpenCOVER	
 ..	
 5	

4.2.2	
 Vistle	
 ..	
 5	

4.3	
 Changes	
 Since	
 D5.3.3	
 [4]	
 ..	
 5	

5	
 Using	
 the	
 Software	
 ..	
 6	

5.1	
 Configuration	
 of	
 OpenCOVER	
 ...	
 6	

5.2	
 COVISE	
 ...	
 6	

5.3	
 Vistle	
 ..	
 6	

5.4	
 Usage	
 Example	
 ...	
 7	

5.4.1	
 COVISE	
 and	
 OpenCOVER	
 as	
 RHR	
 Server	
 ...	
 7	

5.4.2	
 Vistle	
 with	
 Ray	
 Caster	
 as	
 RHR	
 Server	
 ..	
 9	

6	
 Future	
 Work	
 ..	
 12	

7	
 References	
 ...	
 13	

	

	
 	

1 Executive	
 Summary	

This document accompanies the software delivered as the final tool for remote hybrid
rendering (RHR).

RHR is used to access remote exascale simulations from immersive projection
environments over the Internet. The display system may range from a desktop
computer to an immersive virtual environment such as a CAVE. The display system
forwards user input to the visualisation cluster, which uses highly scalable methods to
render images of the post-processed simulation data and returns them to the display
system. The display system enriches these with context information before they are
shown. RHR decouples local interaction from remote rendering and thus guarantees
smooth interactivity during exploration of large remote data sets.

Together with the documentation extracted from the source code, this document
describes the final tool for remote hybrid rendering. The client has been implemented
as a plug-in to the OpenGL based virtual reality renderer OpenCOVER [5] of the
visualization systems COVISE [6] and Vistle [14]. A server is also implemented as a
plug-in for OpenCOVER. It can be used together with a compositor plug-in to scale the
performance with the number of available GPUs. The source code of these plug-ins is
open and can be retrieved from the CRESTA project subversion repository.

In order to scale with the number of nodes on systems that do not provide OpenGL
support, a CPU based data-parallel interactive ray casting render module for Vistle has
been implemented. This renderer also provides a server for remote hybrid rendering.
This software is available as part of Vistle from its publically accessible GitHub
repository [14].

Synchronization between the nodes attached to a tiled display naturally happens in the
client application, as all data transfer is funnelled through the head nodes of the local
and remote systems [3]. On the other hand, reprojection of 2.5D images according to
current viewing parameters automatically brings all tiles into a synchronized state.

While implementing the first prototype of RHR for D5.3.3 [4], it became clear that the
protocol proposed in D5.3.2 [3] based on the DoW had to be changed: interaction,
including multi-touch interaction, and head tracking have to be handled by the client
application, as these have to affect the handling of the local context information as well.
In D5.3.4 [5] the protocol was updated to reflect this. Hence, the protocol for RHR only
sends viewing parameters, derived from user interaction and head tracking, from client
to server, which responds with 2.5D images, which are merged with locally rendered
content.

This design enables the cooperation of light-weight renderers with display programs
that contain most of the application logic and interaction handling. This allows for easy
integration of RHR with a multitude of applications that operate on a 3-dimensional
domain. The sole requirement is that the application is able to generate colour images
together with depth data describing the distance of the visible pixels to the viewer.
Within CRESTA, this would allow to extend the use of RHR from OpenFOAM to all
other applications and especially HemeLB, as this already comes with its own
integrated image generator.

First experience gained during development shows that the performance of the system
could benefit from further latency reduction by providing better compression, and more
overlap between rendering and compression/transmission. Additionally, it seems
worthwhile to provide a software framework that enables easy integration of a RHR
server into existing rendering software.

Copyright © CRESTA Consortium Partners 2014

2

2 Overview	

The next chapter summarizes the basic principles of remote hybrid rendering. In
chapter 4 we describe our implementation. Chapter 5 shows typical usage of the
software. Chapter 6 concludes by summarizing shortcomings which we would have
liked to remedy, given more time. Additional documentation can be extracted from the
source code with doxygen.

2.1 Glossary	
 of	
 Acronyms	

2.5D image data together with depth data
API Application Programming Interface
CPU Central Processing Unit
CUDA Compute Unified Device Architecture (general purpose parallel GPU

programming platform)
GPU Graphics Processing Unit
JPEG Joint Photographic Experts Group
OpenGL Open Graphics Library (graphics rendering API)
RFB Remote Framebuffer Protocol (used by VNC)
RGBA Red/Green/Blue/Alpha (framebuffer format for colour and opacity)
RHR Remote hybrid rendering
VNC Virtual Network Computing
WP Work Package

Copyright © CRESTA Consortium Partners 2014

3

3 Remote	
 Hybrid	
 Rendering	

As in many cases transferring the results of a large-scale simulation, e. g. a long-
running OpenFOAM case, to a local system for rendering is not viable [2], one often
takes recourse to remote rendering: instead of post-processed data, rendered images
are transmitted to the display. The very much lowered bandwidth and processing
requirements of remote rendering allow for making efficient use of remote compute
resources by a much larger user base.

Head-tracked immersive virtual environments, where the rendering is constantly
updated according to the user’s current head position, require high frame rates and low
reaction latencies to achieve a high sensation of presence and to avoid motion
sickness [3]. These immersive visualisation environments provide more intuitive ways
for specifying the location of regions of interest, cutting planes, seed points for particle
traces, or reference points for iso surface extraction than desktop-based systems. We
aim to enable users to experience exascale simulations in such immersive
environments over the Internet.

To improve frame rate and reaction times, we will try to decouple interaction from
network latencies as far as possible, but still without requiring to transfer huge data to
the client. Only extracted features from simulation results will be rendered either
directly on the simulation host or on a remote visualisation cluster employing scalable
methods. But “context information” such as essentially static geometry, as e. g. turbine
shapes, interaction cues for the parameters controlling the visualisation algorithms
applied on the visualisation cluster and menus will be rendered locally, at a rate
independent of the remote rendering. As both remotely and locally rendered images
are composited for final display, we call this technique “remote hybrid rendering” (RHR)
or “hybrid remote rendering” [16]. This compositing usually takes pixel depth into
account, but it might also use opacity information.

Figure 1: a pure remote vs. a remote hybrid rendering workflow.

Figure 1 illustrates the differences between a pure remote rendering and a remote
hybrid rendering workflow. Please refer to section 5.4 for an illustration of this process
by a concrete example.

10#April:: ::

:::::

::EASC#2013

• advantages
– powerful#compute#system#can#be#
used#to#render#the#data

– visualizaDon#not#delayed#unDl#data#
is#transferred

– bandwidth#limited#by#image#size
• disadvantages
– increased#latency#from#user#input#to#
image#visibility

Remote#Rendering

4

simulate

filter

map

render

display

filtered#data

raw#data

geometry

images

localremote

10#April:: ::

:::::

::EASC#2013

Remote#Hybrid#Rendering

5

simulate

filter

map

render

display

render

localremote

• a#mixture#of#remote#and#local#
rendering
– render#huge#DmeTvarying#data#
remotely

– only#context#informaDon#and#
interacDon#elements#are#rendered#
locally

• composite#remote#and#local#image
– requires#2.5D#images:#color#+#depth

raw#data

filtered#data

geometry

images

Copyright © CRESTA Consortium Partners 2014

4

4 Implementation	
 of	
 Remote	
 Hybrid	
 Rendering	

4.1 Implementation	
 Details	

The client for remote hybrid rendering is implemented as the plug-in VncClient to
OpenCOVER [5], the virtual reality renderer of the visualisation system COVISE [6] and
its data-parallel successor Vistle [14], which is currently in development.

For the RHR server, there are two implementations: one is realized as the plug-in
VncServer for OpenCOVER. As such, it is compatible with COVISE and Vistle. The
other implementation is a light-weight rendering module for Vistle, which uses the CPU
for interactive ray casting.

Both server implementations can make use of a cluster of rendering resources by
means of sort-last parallel rendering. The IceT compositor framework [15] is
responsible for depth compositing. While compositing is an integral part of the Vistle
ray caster, OpenCOVER uses the plug-in CompositorIceT for this purpose. As the ray
caster does not depend on GPU support, it will allow for scalability experiments with
higher node counts: the largest GPU cluster that we have available comprises 20
nodes, while we have thousands of CPU nodes.

Please refer to the documentation extracted from the implementation with Doxygen for
further details.

4.1.1 VncClient	
 Plug-­‐in	

While viewing the colour image generated by a RHR server is possible with any VNC
viewer, taking advantage of the compositing of local and remote data requires a
specially adapted VNC client. The VncClient plug-in for OpenCOVER is such a client. It
retrieves both colour image and depth data from the server and renders these as an
additional node in its scenegraph. This achieves compositing of remote and local
content. During each frame, the current values of the matrices describing the positions
of the user’s head and hand are sent to the server. In addition, the results of user
interactions, e.g. new seed points for particle traces, are transmitted to the server.

4.1.2 VncServer	
 Plug-­‐in	

The VncServer plug-in for OpenCOVER provides a full implementation of a VNC
server: every VNC client can connect to it and interact with the visualization with
keyboard and mouse. For implementing this functionality, the library LibVNCServer [9]
has been used.

For remote hybrid rendering, it has been augmented with the following features:

• Transmission of depth data (z-buffer) from server to client for enabling
compositing with image contributions rendered on the client

• Reception of 3D viewer and pointer positions sent by client
• Reception of interaction data sent by client

These additional features can only be exploited by specially adapted VNC clients.

There are two methods for copying the image data from GPU to CPU: one that relies
purely on the OpenGL API call glReadPixels, and another one that employs CUDA for
the transfer from GPU to CPU memory. Especially on gaming class hardware, resorting
to CUDA provides better performance [7].

Colour image data is compressed using VNC’s possibilities by LibVNCServer, for
compressing depth data the snappy entropy compressor library is used [8]. On CUDA
capable GPUs, we implemented a method for lossy depth compression as described in
D5.3.4 [5], which operates orthogonal to the entropy encoding.

4.1.3 CompositorIceT	
 Plug-­‐in	

For data-parallel rendering on OpenGL supported hardware, the VncServer plug-in is
augmented by the plug-in CompositorIceT. It is used to compose a complete image

Copyright © CRESTA Consortium Partners 2014

5

from renderings of all parts of decomposed data sets. This requires 2.5D image data
(colour and depth) for each partial image. The final image is obtained by selecting the
colour of each pixel from the partial image with the smallest corresponding depth value,
i.e. that is closest to the viewer. This step is executed by the IceT compositor, a library
which provides highly efficient algorithms for combining images over MPI.

4.1.4 Vistle	
 Ray	
 Caster	

In order to scale with the number of nodes on systems that do not provide OpenGL
support, a CPU based data-parallel ray casting render module for Vistle has been
implemented. It is based on the ray tracing framework Embree [12], which makes use
of the SIMD units of CPUs to reach interactive frame rates. The sole purpose of this
render module is to provide the remote hybrid rendering service. Because of this, a
rather light-weight implementation was possible, as most of the application logic
resides in the RHR client. The sort-last compositing is again realized with IceT. This is
the only server capable of generating images for multiple views simultaneously, as it is
necessary for e. g. CAVEs.

4.2 Obtaining	
 the	
 Software	

4.2.1 COVISE	
 and	
 OpenCOVER	

The three plug-ins are available as open source, while OpenCOVER is not. For
compiling and using the plug-ins, at least Subversion revision 25946 of COVISE is
required, as implementing remote hybrid rendering necessitated changes to the plug-in
interface of OpenCOVER. Pre-compiled versions of COVISE for testing the software
can be downloaded from https://fs.hlrs.de/projects/covise/support/download/.

The source code of the software, i.e. the three plug-ins for OpenCOVER, can be
accessed using Subversion at
https://svn.ecdf.ed.ac.uk/repo/ph/cresta/wp5/remoterendering/trunk. The
documentation can be extracted by running doxygen in the directory RHR.

4.2.2 Vistle	

The Vistle ray caster is a part of Vistle and as such is available on GitHub in the public
Vistle Git repository [14]. Please refer to the file README.md available there for further
instructions.

4.3 Changes	
 Since	
 D5.3.3	
 [4]	

Since the last delivery of the software, the following notable improvements have been
achieved:

• dynamic resizing of server framebuffer to match client window size,
• improved compression algorithms for depth data and a GPU-based

implementation to provide faster read-back and lower transmission overhead,
• a CPU based data-parallel renderer providing the potential of scaling to high

node counts, as it is independent of GPUs,
• synchronized handling of multiple views as necessary for CAVEs and tiled

displays,
• the effects of high rendering times and latencies, especially for high display

resolutions, are mitigated by reprojecting the 2.5D data of previous frames
already available in the client according to the current view point,

• parallelizing the compression step allows for better overlap of rendering and
compression as well as communication and helps to reduce rendering delays,

• interoperability with server-side parallel rendering as described in D5.3.1 [2] by
integrating the IceT library for compositing, for both CPU and GPU based
rendering.

Copyright © CRESTA Consortium Partners 2014

6

5 Using	
 the	
 Software	

5.1 Configuration	
 of	
 OpenCOVER	

In order to use remote hybrid rendering, OpenCOVER has to be configured to load the
VncServer plug-in on the remote system. This is done by adding the tag <VncServer />
within <COVER><Plugin></Plugin></COVER> to the XML configuration file for
OpenCOVER. Additionally, the TCP port, where the server waits for requests, can be
changed from its default 5900 by adding the attribute rfbPort=”portnumber”. In addition,
the precision of the transmitted depth values can be configured with the attribute
depthPrecision. The possible values are 8, 16, 24, and 32 for the corresponding
number of bits. The default is 16.

On the client system, OpenCOVER has to load the VncClient plug-in. Analogously, this
is achieved by adding the tag <VncClient />. In most cases, the attribute rfbHost has to
be given a value, in order to establish a connection to a VncServer plug-in running on
another system but localhost. The attribute rfbPort can be used to change the TCP port
to which the client will try to connect.

More detailed information on configuring OpenCOVER in general is available in [1].

5.2 COVISE	

A typical visualization session with remote hybrid rendering will rely on the ability of
COVISE to distribute visualization modules across several systems. The compute and
data intense tasks will be handled on the powerful remote system, while the local
system will only be used to display menus or some static geometry to provide context
for the remote visualization results. Hence, the local system will be configured to run
only OpenCOVER and perhaps very few simple additional modules, while the remote
system will also run OpenCOVER as well as a larger amount of modules for analysing
the data.

The final subsection of this section describes such a work flow.

5.3 Vistle	

Vistle provides two options for rendering on the remote cluster: if there are GPUs
available, it is possible to use OpenCOVER with the VncServer and CompositorIceT
plug-ins. Additionally, one can use the CPU based ray caster for in-situ visualisation on
systems without GPUs. The parameters of the ray caster are configured with the Vistle
user interface.

Copyright © CRESTA Consortium Partners 2014

7

5.4 Usage	
 Example	

5.4.1 COVISE	
 and	
 OpenCOVER	
 as	
 RHR	
 Server	

During the implementation of the prototype, a visualization of the simulated air flow
around an Audi A8 has been used. The data flow network of the post-processing
modules has been organized as depicted in Figure 2. Data flows from top, starting with
file input modules, to bottom. The modules depicted in light blue are executed on the
local (i.e. connected to the screen displaying the final image) system, while the
modules coloured in light green are executed on the remote system.

Figure 2: data flow network for remote hybrid rendering, local modules blue, remote modules

green.

The remote system is used for post-processing the results of the flow simulation and
rendering the corresponding visualizations, such as stream lines as well as a plane
cutting through the flow field colourized according to air pressure. Figure 3 shows the
resulting image rendered by the modules labeled OpenCOVER_1 in Figure 2.

Copyright © CRESTA Consortium Partners 2014

8

Figure 3: remotely rendered flow visualization.

The local system renders context information. This comprises the menu and interaction
elements, e.g. for moving the cutting plane. But also the static geometry of the car is
rendered locally. Figure 4 shows the corresponding image produced by the module
labeled OpenCOVER_2.

Figure 4: locally rendered context information.

Copyright © CRESTA Consortium Partners 2014

9

In a final step before displaying the result, locally and remotely rendered images are
composited taking the distance to the viewer of the geometry object contributing the
pixel’s colour into account: the closer pixel of the two images is copied into the final
image, as shown in Figure 5.

Figure 5: final image resulting from compositing local and remote contributions.

Figure 2 does not show the VNC connection used for transmitting the image and user
interaction between the remote OpenCOVER_1 and the local OpenCOVER_2. This
has to be configured as described in section 5.1.

All the interactive features of the visualization system are available even though parts
of the rendering are delegated to a remote system. E.g. new seed points for stream
lines can be placed by interacting with the visualization. Only the fact that the remote
parts of the image are updated less frequently makes this visualization distinguishable
from a purely local visualization.

5.4.2 Vistle	
 with	
 Ray	
 Caster	
 as	
 RHR	
 Server	

For testing the data-parallel ray caster, we used the results of an OpenFOAM
simulation of the pump turbine test case conducted by IHS (Institute of Fluid Mechanics
and Hydraulic Machinery at USTUTT) on 128 processors. Iso surfaces of pressure and
turbulent eddy viscosity (nuSgs) have been used to visualize the turbulence structures
in the diffusor after the runner. Figure 6 depicts the Vistle work flow to obtain the
visualization in Figure 7. The visualization modules run in parallel on 160 processors
on our 20 node visualization cluster. The nodes communicate via MPI, whereas
OpenMP is used for parallelization within nodes. The local instance of OpenCOVER,
which composites the remote visualization with its menus, is not shown in the work
flow.

Copyright © CRESTA Consortium Partners 2014

10

Figure 6: Vistle work flow for pump turbine visualization showing the parameters of the CPU ray

caster.

Figure 7: IHS pump turbine test case with cutting plane and iso surface of turbulent eddy viscosity

(nuSgs) illustrating the turbulent flow in the diffusor after the runner.

Copyright © CRESTA Consortium Partners 2014

11

Figure 8 shows just the bounding geometry and the iso surface, Figure 9 depicts the
contribution of each node to the final image in an individual colour.

Figure 8: Iso surface and bounding geometry rendered in parallel on remote system together with

local 3D menues.

Figure 9: Contributions from each node are shown in different colours.

Copyright © CRESTA Consortium Partners 2014

12

6 Future	
 Work	

Based on the experience gained with implementing and using the current tool for
remote hybrid rendering, we propose that the software should be improved in the
following ways:

• while the CUDA based lossy depth compression is a considerable improvement
over only entropy based compression, bandwidth requirements and latency
could benefit from further refinements of the compression algorithms for depth
data,

• commonalities between the server-side implementations of RHR (OpenCOVER
plug-in and Vistle ray caster) should be identified to reduce code duplication
and to provide a basis for integrating RHR support into other rendering
software.

Copyright © CRESTA Consortium Partners 2014

13

7 References	

[1] Wössner, U. and Rainer, D.: COVISE Installation & Configuration, 2008,

https://fs.hlrs.de/projects/covise/doc/pdf/cover_inst_config.pdf.

[2] F. Niebling, J. Hetherington, and A. Basermann, “D5.3.1 – Remote hybrid rendering:
analysis and system definition for exascale systems,” CRESTA, Mar. 2012.

[3] Aumüller, M.: CRESTA D5.3.2: Remote hybrid rendering: protocol definition for
exascale systems, Oct. 2012.

[4] Aumüller, M.: CRESTA D5.3.3: Remote hybrid rendering: first prototype tool, Mar. 2013.

[5] Aumüller, M.: CRESTA D5.3.4: Remote hybrid rendering: revision of system and
protocol definition for exascale systems, Sep. 2013.

[6] M. Usoh, K. Arthur, M. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks, “Walking
> walking-in-place > flying, in virtual environments,” SIGGRAPH '99: Proceedings of the
26th annual conference on Computer graphics and interactive techniques, Jul. 1999.

[7] U. Woessner, D. Rantzau, and D. Rainer, “Interactive Simulation Steering in VR and
Handling large Datasets,” IEEE Virtual Environments, Jan. 1998.

[8] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Woessner, “COVISE in the CUBE: An
Environment for Analyzing Large and Complex Simulation Data,” 2nd Workshop on
Immersive Projection Technology, 1998.

[9] F. Niebling, A. Kopecki, and M. U. Aumüller, “Integrated Simulation Workflows in
Computer Aided Engineering on HPC Resources”, International Conference on Parallel
Computing, 2011, Ghent.

[10] Snappy – a fast compressor/decompressor [Online], Available:
https://code.google.com/p/snappy/, [Accessed: 23 Feb. 2013].

[11] LibVNCServer/LibVNCClient [Online], Available: http://libvncserver.sourceforge.net,
[Accessed: 20 Feb. 2013].

[12] S. Woop, L. Feng, I. Wald, and C. Benthin, “Embree ray tracing kernels for CPUs and
the Xeon Phi architecture. ,” SIGGRAPH Talks, p. 44, 2013.

[13] M. Aumüller, “Remote Hybrid Rendering of Exascale Data in Immersive Virtual
Environments,” presented at EASC, 2013.

[14] Vistle GitHub repository [Online], Available https://github.com/vistle/vistle, [Accessed:
01 Mar. 2014].

[15] K. Moreland, W. Kendall, T. Peterka, and J. Huang, “An image compositing solution at
scale,” presented at the High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for, 2011, pp. 1–10.

[16] C. Wagner, M. Flatken, F. Chen, A. Gerndt, C. Hansen, and H. Hagen, “Interactive
Hybrid Remote Rendering for Multi-pipe Powerwall Systems,” in Virtuelle und Erweiterte
Realität - 9. Workshop der GI-Fachgruppe VR/AR, C. Geiger, J. Herder, and T.
Vierjahn, Eds. Aachen: Shaker Verlag, 2012, pp. 155–166.

