

Copyright © CRESTA Consortium Partners 2014

D5.3.6	 –	 Remote	 hybrid	 rendering:	
tool	 evaluation	 and	 investigation	

with	 application	 data	

WP5:	 User	 tools	

Due date: M39

Submission date: 31/12/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization USTUTT

Version: 1.0

Status Final

Author(s): Martin Aumüller (USTUTT)

Reviewer(s) Luis Cebamanos (EPCC), Dmitry Khabi (USTUTT)

Dissemination level

PU PU - Public

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	 History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 28/11/2014 First version of the deliverable Martin Aumüller
(USTUTT)

0.2 05/12/2014 Address reviewer comments Martin Aumüller
(USTUTT), Luis
Cebamanos (EPCC),
Dmitry Khabi (USTUTT)

1.0 08/12/2014 Final version for submission Catherine Inglis (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	 of	 Contents	
1	 EXECUTIVE	 SUMMARY	 ...	 1	
2	 INTRODUCTION	 ...	 2	

2.1	 GLOSSARY	 OF	 ACRONYMS	 ..	 2	
3	 MOTIVATION	 ...	 3	
4	 DESIGN	 &	 IMPLEMENTATION	 ...	 5	

4.1	 REQUIREMENTS	 ...	 5	
4.1.1	 Considerations	 for	 exascale	 systems	 ..	 5	
4.1.2	 Requirements	 for	 immersive	 display	 systems	 ..	 6	
4.1.3	 Performance	 requirements	 ..	 6	

4.2	 PROTOCOL	 FOR	 REMOTE	 HYBRID	 RENDERING	 ..	 7	
4.3	 IMPLEMENTATION	 ..	 7	

4.3.1	 Local	 display	 client	 ...	 7	
4.3.2	 Remote	 rendering	 server	 ..	 7	

4.4	 CONTROLLING	 RHR	 BEHAVIOR	 ..	 8	
5	 TOOL	 EVALUATION	 ..	 9	

5.1	 DATA	 SET	 AND	 TEST	 CONFIGURATION	 ..	 9	
5.2	 QUANTITATIVE	 EVALUATION	 ...	 10	

5.2.1	 Image	 compression	 ..	 10	
5.2.2	 Bandwidth	 requirements	 and	 latency	 ..	 11	
5.2.3	 Latency	 ...	 11	
5.2.4	 Frame	 rates	 ..	 11	
5.2.5	 Summary	 ..	 11	

5.3	 REPROJECTION	 ARTIFACTS	 ..	 12	
5.4	 SUBJECTIVE	 EXPERIENCE	 ...	 13	

6	 DISCUSSION	 ...	 15	
6.1	 LESSONS	 LEARNED	 ..	 15	

6.1.1	 Pure	 remote	 rendering	 vs.	 remote	 hybrid	 rendering	 ..	 15	
6.1.2	 Choice	 of	 RFB	 as	 base	 protocol	 ..	 15	

6.2	 OPEN	 CHALLENGES	 ...	 15	
7	 REFERENCES	 ...	 16	

Index	 of	 Figures	
Figure 1: a pure remote vs. a remote hybrid rendering workflow. 3	
Figure 2: Local context information (top left), remote simulation data (top right), fused
image shown to the user (bottom). ... 4	
Figure 3: Typical network topology for a remote visualization task, the RHR protocol will
be employed on the single link from the visualization nodes (green) to the display
system (purple). .. 5	
Figure 4: The view of the IHS pump turbine test case selected for image compression
assessment. ... 9	
Figure 5: Contribution of nodes in different colors (left) and final composited image
(right) of IHS pump turbine test case. ... 10	
Figure 6: Depth buffer compression quality – left: original image, middle: with
compressed depth, right: differences highlighted in red. .. 11	
Figure 7: Rendering artifacts due to reprojection of 2.5D data for new view points. 13	

Copyright © CRESTA Consortium Partners 2014

Figure 8: HLRS booth at Supercomputing '14 in New Orleans with a remote hybrid
rendering of the IHS pump turbine from Stuttgart, Germany, in stereo 3D. 14	

Index	 of	 Tables	
Table 1: Summary of measurements. .. 12	

© CRESTA Consortium Page 1 of 16

1 Executive	 Summary	
Remote hybrid rendering (RHR) is used to access remote exascale simulations from
immersive projection environments over the Internet. The display system may range
from a desktop computer to an immersive virtual environment such as a CAVE [10].
The display system forwards user input to the visualization cluster, which uses highly
scalable methods to render images of the post-processed simulation data and returns
them to the display system. The display system enriches these with context information
rendered locally, before they are shown. RHR decouples local interaction from remote
rendering and thus guarantees smooth interactivity during exploration of large remote
data sets.

The protocol for RHR only sends viewing parameters, derived from user interaction and
head tracking, from client to server, which responds with 2.5D images, which are
merged with locally rendered content. This design enables the cooperation of light-
weight renderers with display programs that contain most of the application logic and
interaction handling. This allows for easy integration of RHR with a multitude of
applications that operate on a 3-dimensional domain. The sole requirement is that the
application is able to generate color images together with depth data describing the
distance of the visible pixels to the viewer.

For evaluating RHR, the distributed memory parallel visualization tool Vistle [2] has
been implemented. RHR is composed with a scalable rendering system employing
sort-last parallel rendering. With a CPU based remote ray caster [21], extraction of
isosurfaces and cutting surfaces can be controlled interactively from virtual
environments. This system was used successfully on various display systems.
Interaction is smooth due to high local display update rates. Cutting surfaces and
isosurfaces are generated based on input from within the virtual environment. The goal
of decoupling interaction from remote rendering latencies has been achieved.

Compared to classic remote rendering, RHR allows for lightweight rendering server
implementations. In a context where the rendering server is replicated many times, e.g.
for in situ visualization tasks, this is an advantage.

© CRESTA Consortium Page 2 of 16

2 Introduction	
Remote hybrid rendering is used to make the post-processing resources used in large-
scale cluster systems available to remote users. This document describes the
experience gained from implementing and evaluating the prototypical tools developed
to this end.

This document is structured as follows: following this introduction, we describe the
motivation for the system in section 3. Section 4 describes the system. In section 5, we
evaluate the tool both quantitatively and subjectively. We conclude with a comparison
of classic remote rendering and remote hybrid rendering, and a discussion of unsolved
problems in section 6.

2.1 Glossary	 of	 Acronyms	
2.5D Image data together with depth data
6DOF 6 degrees of freedom, usually position and orientation
API Application Programming Interface
CAVE Cave automatic virtual environment
CPU Central processing unit
CUDA Compute Unified Device Architecture (general purpose parallel GPU

programming platform)
Full HD 1920x1080 pixels
GPU Graphics processing unit
HD High Definition
JPEG Joint Photographic Experts Group
OpenGL Open Graphics Library (graphics rendering API)
PSNR Peak-signal to noise ratio
QDR Quad-Data Rate (InfiniBand at 40 Gbit/s)
RFB Remote Framebuffer Protocol (used by VNC)
RGBA Red/Green/Blue/Alpha (framebuffer format for color and opacity)
RHR Remote hybrid rendering
VNC Virtual Network Computing
WP Work package

© CRESTA Consortium Page 3 of 16

3 Motivation	
Output data of simulations can be large. The Institute of Fluid Mechanics and Hydraulic
Machinery (IHS) at the University of Stuttgart uses OpenFOAM to simulate the flow in
an entire hydro turbine. Based on the estimated requirement for a dependable
simulation of about 1 billion nodes for the whole turbine, the size of a single time step is
about 1/4 TB. Storing a full turbine rotation with steps of one degree requires about 90
TB. Transferring that amount of data across a high-speed link (10 GigE) for off-line
processing on a user workstation would take more than one day – and would require
huge amounts of local storage and processing power. This shows that for exascale
data the traditional way of transferring the post-processed geometry data to the display
system for local rendering is not possible anymore. In comparison, streaming rendered
images of the data set can save bandwidth. Sending uncompressed HD-resolution
(1920x1080 pixels) images at 30 frames/s for a whole day would require less than 15
TB of bandwidth – and the image the user is interested in is available immediately, not
just after a lengthy preparatory transfer. Additionally, employing image compression
techniques can significantly reduce this amount of data without even incurring a visible
loss. This technique of transmitting rendered images instead of post-processed data to
the display system is called remote rendering. The significantly lowered bandwidth and
processing requirements of remote rendering allow efficient use of remote compute
resources by a much larger user base.

Head-tracked immersive virtual environments, where rendering is constantly updated
according to the user’s current head position, require high frame rates and low reaction
latencies to achieve a high sensation of presence and to avoid motion sickness [4].
These immersive visualization environments provide more intuitive ways than desktop-
based systems to specify the location of regions of interest, cutting planes, seed points
for particle traces, or reference points for isosurface extraction. We aim to allow users
to experience exascale simulations in such immersive environments over the Internet.

To improve frame rate and reaction times, we try to decouple interaction from network
latencies as far as possible, while still not requiring huge volumes of data to be
transferred to the client. Only extracted features from simulation results are rendered
either directly on the simulation host or on a remote visualization cluster employing
scalable methods. But “context information” such as essentially static geometry (e.g.
turbine shapes), interaction cues for the parameters controlling the visualization
algorithms applied on the visualization cluster, and menus are rendered locally, at a
rate independent of the remote rendering. As both remotely and locally rendered
images are composited for final display, we call this technique “remote hybrid
rendering” (RHR) or “hybrid remote rendering” [1]. This compositing usually takes pixel
depth into account, but it might also use opacity information. Figure 1 illustrates the
differences between a pure remote rendering and a remote hybrid rendering
visualization pipeline.

Figure 1: a pure remote vs. a remote hybrid rendering workflow. 10#April:: ::

:::::

::EASC#2013

• advantages
– powerful#compute#system#can#be#
used#to#render#the#data

– visualizaDon#not#delayed#unDl#data#
is#transferred

– bandwidth#limited#by#image#size
• disadvantages
– increased#latency#from#user#input#to#
image#visibility

Remote#Rendering

4

simulate

filter

map

render

display

filtered#data

raw#data

geometry

images

localremote

10#April:: ::

:::::

::EASC#2013

Remote#Hybrid#Rendering

5

simulate

filter

map

render

display

render

localremote

• a#mixture#of#remote#and#local#
rendering
– render#huge#DmeTvarying#data#
remotely

– only#context#informaDon#and#
interacDon#elements#are#rendered#
locally

• composite#remote#and#local#image
– requires#2.5D#images:#color#+#depth

raw#data

filtered#data

geometry

images

© CRESTA Consortium Page 4 of 16

Figure 2 shows a visualization of the simulated air flow around a car and illustrates how
the image presented to the user results from local context information and remote
simulation data.

The remote system is used for post-processing the results of the flow simulation and
rendering the corresponding visualizations, such as streamlines as well as a plane
cutting through the flow field colorized according to air pressure. The local system
renders context information. This comprises the menu and interaction elements, e.g.
for moving the cutting plane. But the static geometry of the car is also rendered locally.
In a final step before displaying the result, locally and remotely rendered images are
composited, taking into account the distance to the viewer of the geometry object
contributing the pixel’s color: the closer pixel of the two images is copied into the final
image.

All the interactive features of the visualization system are available even though parts
of the rendering are delegated to a remote system, e.g. new seed points for
streamlines can be placed by interacting with the visualization. Only the fact that the
remote parts of the image are updated less frequently makes this visualization
distinguishable from a purely local visualization.

Figure 2: Local context information (top left), remote simulation data (top right), fused image

shown to the user (bottom).

© CRESTA Consortium Page 5 of 16

4 Design	 &	 implementation	
4.1 Requirements	
4.1.1 Considerations	 for	 exascale	 systems	
The environments to which we try to adapt our remote hybrid visualization system are
comprised of the following parts:

• a remote exascale compute resource,

• possibly a remote visualization cluster, tightly coupled to the compute resource,

• a local display system.

Figure 3: Typical network topology for a remote visualization task, the RHR protocol will be

employed on the single link from the visualization nodes (green) to the display system (purple).

In some cases, e.g. when there are GPUs inside each node of the exascale system or
with CPU based rendering, the compute system and the visualization system might be
the same resource and the GPUs might be used for both simulation and visualization.
For all other cases, we assume a high-bandwidth low-latency link of a quality
comparable to the exascale cluster interconnect between compute and visualization
system. The network connection between remote visualization cluster and display
system will provide considerably lower bandwidth and higher latency. While it is
desirable to have a higher quality link between visualization and display, this will not
always be possible in the case where remote hybrid rendering is used, as this
connection will usually be across the Internet.

The network infrastructure might allow for direct connections from each node of the
visualization cluster to each node of the display system, but in the general case the
network topology or firewalls prohibit this. Hence, we design our system to cope with a
point-to-point connection between the head node of the visualization cluster and the
head node of the local display system. The protocol should keep the number of
simultaneous network connections to a minimum; the establishment of a connection
should be possible from client to server and vice versa in order to cater for all possible
circumstances.

Sort-last [11] has been selected as the method for parallelizing the render process, as
this allows the renderer to be scaled with the application in a data parallel setting. This
means that flat pixel images as present in a framebuffer are the result of the rendering
phase. The available data for remote rendering is one color value including opacity per
pixel together with possibly one depth value. Remote sort-last parallel rendering in a
system with the described network topology provides the best performance if
compositing happens on the visualization cluster, as this saves bandwidth on the
slower link between visualization and display system. The requirement of a point-to-
point connection between the head nodes of the visualization cluster and the local
display system makes it necessary for the composition of the rendered image data to

exascale compute
resource

visualization
cluster

display
system

© CRESTA Consortium Page 6 of 16

happen on the visualization cluster. This ensures that remote hybrid rendering can be
composed with scalable rendering methods.

However, rendering context information locally requires a final compositing step in the
display system. Depending on the context information to be shown and the rendered
data, this requires depth or opacity in addition to the color information for each image
pixel.

4.1.2 Requirements	 for	 immersive	 display	 systems	
The display system might be a traditional desktop computer. But the focus of this work
is to enable access to remote exascale visualizations from within immersive projection
systems. These are distinguished from desktop systems by:

• input devices which record their position and orientation and input methods
which exploit this additional information;

• tracking of the user’s head position and continuous updating of the rendered
image according to the changing point of view (POV);

• 3D stereoscopic imagery, where each eye is presented with an image that is
adapted to its position;

• multiple display surfaces, which are used to enhance the resolution (e.g. in
powerwalls, where several screens are tiled in one plane to form a larger
display area) or to surround the viewer with images (e.g. in a CAVE, where the
sides of a cube around the viewer are used as projection surfaces).

It is sufficient to serve one display system at a time. But such a system might possibly
consist of several display surfaces, each of which may be a stereographic display.
Updates to different display surfaces have to be synchronized in order to enable
correct 3D stereoscopy across all surfaces. This might incur longer latencies, when the
images for all tiles are not available at the display client at the same time, but this
synchronization is vital for immersive display environments. With our design, where all
data transfer is funneled through the head nodes of the local and remote systems,
synchronization between the nodes attached to a tiled display naturally happens in the
client application. On the other hand, reprojection of 2.5D images according to current
viewing parameters automatically brings all tiles into a matching state, so that
synchronization becomes unnecessary.

4.1.3 Performance	 requirements	
Communication overhead should be minimal. Network round trips, e.g. waiting for
acknowledgement of successful delivery of messages, have to be avoided in order to
guarantee good performance. For local area connections, TCP based protocols have
proven superior, whereas in wide area networks, UDP based protocols seem to have
an advantage [14]. We expect the principal use case to be from within local area
networks or within networks providing a similar connection quality, such that we prefer
TCP to UDP.

In order to be able to balance visual accuracy with performance, the RHR protocol has
to allow for different encodings and compression algorithms. And to accommodate
changing network circumstances (bandwidth and latency variations), these have to be
switchable at run-time. Compression should not visibly decrease image quality for
either line drawings or images with huge amounts of gradients, e.g. from volume
rendering.

The RHR protocol should not hinder the off-load of suitable tasks, such as image
compression or decompression, to accelerators, such as GPUs. This mostly concerns
the image codecs to be used. Hence, we want to allow the easy addition of new
codecs. This also allows the use of codecs adapted to the requirements of the
processing of the transmitted data on the display system, e.g. when the 2.5D image is
reprojected [15]. Additionally, this allows the system to profit easily from algorithmic
improvements available in new video codecs, such as H.265 [16], as soon as GPGPU
solutions for real-time compression at high resolutions are available.

© CRESTA Consortium Page 7 of 16

4.2 Protocol	 for	 remote	 hybrid	 rendering	
The purpose of the protocol for remote hybrid rendering is to define the communication
between the visualization cluster and the local display system. i.e., the protocol for
hybrid remote rendering connects the rendering stage to the display stage of the post-
processing phase of the visualization pipeline. The data to be sent comprises viewing
matrices, lighting configuration, desired image resolution and current animation step
from client to server, which sends color and depth images in response.

Integrating the remote rendering facility with the application might enable further
optimizations, as the application has more knowledge about which data is important.
The application might chose to update the significant regions more often or at lower
compression level with higher image fidelity. But as application independence is also a
goal of this system, we do not take into account solutions that require tight coupling
with the application, such as described above, e.g. IBRAC [13], or as implemented in
Visapult [12].

Based on an assessment of the requirements listed above, we opted to implement
RHR as extensions to the RFB protocol [17], as it allows for backward compatibility
with regular VNC (Virtual Network Computing) clients by building on the extensible
protocol implementation LibVncServer [3].

4.3 Implementation	
4.3.1 Local	 display	 client	
The client for remote hybrid rendering is implemented as a plug-in to OpenCOVER [5],
the virtual reality renderer of the visualization system COVISE [9], and its data-parallel
successor Vistle [2], which is currently being developed. It retrieves both color image
and depth data from the server and renders these as an additional node in its scene
graph. This achieves compositing of remote and local content. During each frame, the
current values of the matrices describing the positions of the user’s head and hand are
sent to the server. In addition, the results of user interactions, e.g. new seed points for
particle traces, are transmitted to the server.

While viewing the color image generated by an RHR server is possible with any VNC
viewer, taking advantage of the compositing of local and remote data requires such a
specially adapted VNC client.

4.3.2 Remote	 rendering	 server	
For the RHR server, there are two implementations: one is realized as a plug-in for
OpenCOVER. As such, it is compatible with COVISE and Vistle. The other
implementation is a light-weight rendering module for Vistle, which uses the CPU for
interactive ray casting.

Both server implementations can make use of a cluster of rendering resources by
means of sort-last parallel rendering: a complete image is composited from renderings
of all parts of decomposed data sets. This requires 2.5D image data (color and depth)
for each partial image. The final image is obtained by selecting the color of each pixel
from the partial image with the smallest corresponding depth value, i.e. that which is
closest to the viewer. This step is executed by the IceT compositor framework [8], a
library which provides highly efficient algorithms for combining images over MPI.

OpenCOVER uses a plug-in for this purpose, while compositing is an integral part of
the Vistle ray caster. As the ray caster does not depend on GPU support, it allows
scaling with the simulation even when there are no GPUs in the compute nodes.

The RHR servers provide a full implementation of a VNC server: every VNC client can
connect to it and interact with the visualization with keyboard and mouse. For
implementing this functionality, the library LibVNCServer [3] has been used.

For remote hybrid rendering, it has been augmented with the following features:

© CRESTA Consortium Page 8 of 16

• Transmission of depth data (z-buffer) from server to client to enable
compositing with image contributions rendered on the client

• Reception of 3D viewer and pointer positions sent by client
• Reception of interaction data sent by client

For compressing depth data the Snappy entropy compressor library is used [7]. For
CPUs and CUDA capable GPUs, we implemented a method for lossy depth
compression similar to DirectX texture compression, which operates orthogonal to the
entropy encoding. The development of our own algorithm for depth compression was
necessary, as we did not find a high bandwidth compression algorithm for image data
with more than 8 bit precision per channel. Although VNC has mechanisms for sending
color images, we added our own extension for sending JPEG compressed image tiles
in order to be able to synchronize color and depth frames, which is necessary for
correct compositing of local and remote images.

When rendering with OpenGL, image data has to be transferred from GPU to CPU
memory before compositing. We employ two methods for copying the image data from
GPU to CPU: one that relies purely on the OpenGL API call glReadPixels, and another
one that employs CUDA for the transfer from GPU to CPU memory. Especially on
gaming class hardware, resorting to CUDA provides better performance [6].

The CPU based data-parallel ray casting render module for Vistle is based on the ray
tracing framework Embree [18], which makes use of the SIMD units of CPUs to reach
interactive frame rates. The sole purpose of this render module is to provide the remote
hybrid rendering service. Because of this, a rather light-weight implementation was
possible, as most of the application logic resides in the RHR client.

4.4 Controlling	 RHR	 behavior	
There are several ways of influencing remote hybrid rendering behavior.

• Data Distribution: The user can choose how to split the data between local
and remote systems. On the one extreme, only interaction elements such as
menus are rendered locally, while all the simulation data is kept on the remote
system. If the local system is powerful enough, a large part of the static
geometry can be rendered locally in order to provide lower interaction latency
with these parts of the data. This is handled by the distributed visualization
system.

• Image Quality: Image quality can be traded for bandwidth reduction and higher
frame rates. Less precise lossy compression reduces bandwidth requirements.
And reducing the resolution of the rendered image both reduces bandwidth
requirements while simultaneously reducing the load on the image generation
pipeline. Several different ways to compress depth and color images have been
implemented.

• Composition: For high image fidelity, it is possible to combine the remote
image with the local elements in a pose that corresponds to the viewing
parameters used during remote image generation. The resulting behavior
shows the limited interactivity of classic remote rendering. We did not
implement that approach. Another possibility is to overlay the remote content
with local imagery for the current viewing parameters. A third possibility is to
warp or reproject the remote image based on the available depth data
according to the current head position, thereby generating the lowest latency for
head movements. However, this comes at the cost of holes in the warped
surface and polygons that are shaded according to a previous viewer position.
These two possibilities are implemented.

© CRESTA Consortium Page 9 of 16

5 Tool	 evaluation	
5.1 Data	 set	 and	 test	 configuration	
For evaluation, the Institute of Fluid Mechanics and Hydraulic Machinery provided us
with the results of a flow simulation in a water pump turbine. This unsteady simulation
was conducted with OpenFOAM on 128 CPU cores on an unstructured grid consisting
of 5.9 million hexahedron cells. Accordingly, the domain has been partitioned into 128
blocks. 273 time steps are available, a subset of which has been used.

From this dataset, the pressure has been used to extract an isosurface (green, value -
1.86929416656) and the turbulence measure nuSgs has been used to colorize a
cutting surface through the rotation axis of the turbine.

For the image compression tests, time step 0 of this data set has been used with the
view shown in Figure 4. To make better use of the display area, a square view has
been used: with the test data set this could avoid many “empty”/black pixels which do
not show any significant data. A size of 1440x1440 pixels has been used, because this
amounts to the same number of pixels as one Full HD image (1920x1080 pixels). The
menu bar at the top of the image has been rendered locally.

Figure 4: The view of the IHS pump turbine test case selected for image compression assessment.

The behavior of the system together with CPU based ray casting, a rendering method
which for each pixel in the image traces rays from the viewer to the scene, but without
taking into account shadowing, was studied. 16 nodes with 2 sockets holding 4 Sandy

© CRESTA Consortium Page 10 of 16

Bridge cores each (Xeon E5-2643, 3.30GHz) have been used during the evaluation.
The nodes are connected with a QDR InfiniBand network. For each time step, 8 blocks
of the original partitioned data set are processed on one node. No data has been
replicated across nodes. We used one MPI rank on each node. Rendering was done
with a hybrid sort-first/sort-last algorithm: on each node, an image covering the whole
screen area and containing the local parts of the data set has been rendered. This
image has been subdivided into tiles of 64 by 64 pixels. These tiles are distributed to
the available cores for rendering. After all tiles have been rendered, the IceT
compositor assembled a complete 2.5D image on rank 0. Rank 0 then compresses the
image and sends it to the client. Compression can happen in parallel with rendering
images for other display surfaces requested by the client, e.g. for other eyes or other
screens of a tiled display. Figure 5 shows the contributions to the final image from
individual nodes in different colors together with the final composited image.

Figure 5: Contribution of nodes in different colors (left) and final composited image (right) of IHS

pump turbine test case.

The display system was a Core i7 2600K (3.40GHz) with a Quadro K6000 GPU. It was
connected with a 10 Gbit Ethernet link to the visualization cluster.

5.2 Quantitative	 evaluation	
In order to allow for performance measurements, the tool has been instrumented to
collect timing information, compression ratios and image quality metrics.

5.2.1 Image	 compression	
The compression rates given in frames/s refer to frames sized 1440x1440 pixels, i.e.
Full HD frames/s.

5.2.1.1 Color	 images	
There are well-established means for compressing color images for remote rendering.
We resorted to the approach used by VirtualGL [19]: compression with the JPEG still
image codec. Like VirtualGL, we also used the SIMD-accelerated libjpeg-turbo [20]. We
used 4:2:0 chrominance sub-sampling, i.e. the two chrominance values have been
generated for each 2x2 pixel block of luminance data. We set the JPEG compression
quality to 90. As we did not experience visible compression artifacts and as the amount
of color data did not dominate the required bandwidth, we did not experiment with
these settings. Compression happens at about 210 MPix/s (about 101 frames/s). The
image size was reduced from 5.9 MB/frame to 0.18 MB/frame (3 %).

When bandwidth is not an issue, Snappy can provide somewhat lower latencies. In
addition, this allows the remote image to be reproduced exactly. Compression occurs
at a rate of about 420 MPix/s (about 203 frames/s). The image was compressed to
0.85 MB/frame (14.4%).

5.2.1.2 Depth	 images	
Quantization of depth data happens at a rate of about 70 million pixels/s (about 34
frames/s) on a single core, whereas the reverse process takes place at a rate of about

© CRESTA Consortium Page 11 of 16

120 million pixels/s (about 58 frames/s). There is some dependency on the input: more
pixels at the far plane accelerate the process slightly. The measurements have been
taken for the reference view. In its normal configuration, compression and
decompression is distributed onto the available cores in tiles of size 256 x 256 pixels.

When using 24 bits for minimum and maximum per quantized depth tile of 4x4 pixels
together with additional 3 bits/pixel, we reach a peak-signal to noise ratio (PSNR) of
about 81.8 dB. One depth frame gets compressed from 5.9 MB to 1.48 MB (25.0%).
The compression rate is independent of the image contents.

The observed PSNR is relatively high compared to codecs for color images. Hence, we
did not notice any artifacts resulting from low depth fidelity based on the positions that
pixels are reprojected to.

However, there is another source of error: based on the depth value of a pixel, its color
value is chosen during compositing from either the remote color image or the local
rendering. Hence, a pixel is either displayed correctly or in a completely unrelated
color. As these artifacts can appear and disappear from frame to frame, they might be
more noticeable than the PSNR suggests. Figure 6 illustrates these artifacts.

Figure 6: Depth buffer compression quality – left: original image, middle: with compressed depth,
right: differences highlighted in red.

If depth quantization is followed by Snappy entropy encoding, then this occurs at a rate
of about 1500 MPix/s (about 725 frames/s). This achieves a reduction to 0.25
MB/frame (4.2%). If depth is encoded with Snappy without preceding data reduction by
quantization, then again a rate of about 420 MPix/s (about 203 frames/s) as for RGB
images is achieved. The depth image is reduced to 1.09 MB/frame (18.8%).

5.2.2 Bandwidth	 requirements	 and	 latency	
The bandwidth required for one frame is the sum of the compressed sizes of color and
depth images. Please consult Table 1 for the values.

5.2.3 Latency	
Latency varies with the codecs used for color and depth images. This is probably
mostly due to the time consumed on rank 0 for compressing the image streams. Please
refer to Table 1 for the details.

5.2.4 Frame	 rates	
Remote frame rates are mostly limited by the performance of the CPU based ray
caster. But the compression time also plays an important role, as compression is
handled only by rank 0. We could generate about 7–11 updates per second for our
reference view. Because of the hybrid sort-first/sort-last approach in the current
implementation, this rate could be improved with a higher core count on a single node.

Local frame rates vary depending on whether reprojection is used. With reprojection,
we achieved about 45 frames/s, without about 560 frames/s. Both results demonstrate
that the goal of decoupling local updates from remote updates has been reached.

5.2.5 Summary	
Table 1 summarizes the results for some combinations of compression settings. When
“raw” data is transferred, then the current implementation of the system sends one

© CRESTA Consortium Page 12 of 16

redundant byte for each depth and RGB pixel. Hence, the data for one image is higher
than the uncompressed size mentioned above.

Color codec Raw
(4 byte/pix)

snappy JPEG JPEG JPEG

Depth codec Raw
(4 byte/pix)

snappy snappy quant quant+snappy

Latency (s) 0.141 0.125 0.106 0.173 0.161

Remote F/s 10.6 11.3 11.0 7.3 7.3

Color (MB/F) 7.91 0.85 0.18 0.18 0.18

Depth (MB/F) 7.91 1.09 1.09 1.48 0.25

Total (MB/F) 15.82 1.94 1.27 1.66 0.43

Total bandwidth
(MB/s)

168 26.0 17.9 12.2 3.1

Table 1: Summary of measurements.

5.3 Reprojection	 artifacts	
When just displaying the images that have been rendered remotely, the system is slow
to react to view point changes, e.g. due to a new head position or when the object has
been rotated. This is mitigated by reprojection. However, this induces artifacts when
regions of the objects become exposed which have not been visible from the original
vantage point: holes appear at those areas. This is illustrated in Figure 7. While the
small hair lines can be covered by simply drawing points covering more than one
screen pixel [1], this is not possible when large areas become visible, such as parts of
the isosurface or areas previously obstructed by the isosurface.

© CRESTA Consortium Page 13 of 16

Figure 7: Rendering artifacts due to reprojection of 2.5D data for new view points.

Similar effects happen at the edges of display surfaces. With planar tiled displays,
these holes could be filled in with pixels from neighboring displays. However in a
system such as a CAVE, this is not possible: neighboring surfaces are usually oriented
perpendicular to each other, hence the reprojection of the pixels from neighbor displays
would only cover a very small area of the screen when the view point is changed
slightly. Only increasing the size of the images could mitigate this effect, but this comes
at a higher render and transfer cost.

5.4 Subjective	 experience	
The system was demonstrated successfully at the HLRS booth (see Figure 8) at this
year’s Supercomputing conference in New Orleans: post-processing and rendering
took place on a cluster at HLRS in Stuttgart, Germany. The results have been
displayed on a stereo 3D display with 1400x1050 pixels (2.94 MPix per stereo frame)
with head tracking. Interaction was smooth due to high local display update rates.
Placing cutting surfaces and changing the isovalue was possible from within the virtual
environment. After less than a second, updated images for the new parameters have
become available, even though network round-trip times to Stuttgart were about 200
ms. A shared network connection to Stuttgart was used. The available bandwidth was
about 10 MB/s. With full compression, display updates occurred at rates of about 10
frames/s.

© CRESTA Consortium Page 14 of 16

Figure 8: HLRS booth at Supercomputing '14 in New Orleans with a remote hybrid rendering of the

IHS pump turbine from Stuttgart, Germany, in stereo 3D.

We also used the system in our 5 wall CAVE: each side shows square 1200x1200 pixel
images for each eye. Together with a head node, this sums up to 15 million pixels. We
could achieve a remote frame rate of about 3/s. While it became clear that higher
update rates are desirable, interaction with the data was still possible.

With full compression, the system is also usable across a broadband Internet
connection (50 Mbit/s DSL) on a single screen system, e.g. a laptop computer.

These three use cases show that remote hybrid rendering is a promising approach: it is
applicable to long-distance links, display systems with high pixel counts and multiple
surfaces, and low bandwidth connections.

© CRESTA Consortium Page 15 of 16

6 Discussion	
6.1 Lessons	 learned	
6.1.1 Pure	 remote	 rendering	 vs.	 remote	 hybrid	 rendering	
Classic remote rendering couples a large server application on the remote system to a
small display client on the local system. With remote hybrid rendering, this situation is
reversed: all the application logic can reside on the local system, and the server
application is only responsible for image generation according to updated view points
from the client. The result is a lean server, which can be easily integrated with different
applications, especially if the application already includes its own renderer. This
benefits massively parallel systems, where the remote application is replicated across
many nodes. This should make RHR very well suited for in-situ visualization.

6.1.2 Choice	 of	 RFB	 as	 base	 protocol	

When designing the system, VNC’s RFB protocol seemed to be a good choice as a
base protocol for server/client communication. But during development, we replaced all
parts of the VNC protocol with our own implementation, such that RFB merely served
as a transport channel for our own protocol. Fortunately, this only incurs an overhead
of one byte per request. But using direct socket communication instead of introducing
LibVNCServer as another layer would have allowed for more control of TCP behavior.
However, RFB still provides backward compatibility with regular VNC clients.

6.2 Open	 challenges	
Based on the experience gained with implementing and using the current tool for
remote hybrid rendering, we see the following gaps where the software could be
improved:

• commonalities between the server-side implementations of RHR (OpenCOVER
plug-in and Vistle CPU ray caster) should be identified to reduce code
duplication and to provide a basis for integrating RHR support into other
rendering software;

• while the lossy depth compression is a considerable improvement over only
entropy based compression for low-bandwidth connections, bandwidth
requirements and latency could benefit from further improvements of the
compression algorithms for depth data, e.g. by exploiting inter-frame
coherence.

© CRESTA Consortium Page 16 of 16

7 References	
[1] C. Wagner, M. Flatken, F. Chen, A. Gerndt, C. Hansen, and H. Hagen, “Interactive

Hybrid Remote Rendering for Multi-pipe Powerwall Systems,” in Virtuelle und Erweiterte
Realität - 9. Workshop der GI-Fachgruppe VR/AR, C. Geiger, J. Herder, and T.
Vierjahn, Eds. Aachen: Shaker Verlag, 2012, pp. 155–166.

[2] Vistle GitHub repository [Online], Available https://github.com/vistle/vistle, [Accessed:
01 Mar. 2014].

[3] LibVNCServer/LibVNCClient [Online], Available: http://libvncserver.sourceforge.net,
[Accessed: 20 Feb. 2013].

[4] M. Usoh, K. Arthur, M. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks, “Walking
> walking-in-place > flying, in virtual environments,” SIGGRAPH '99: Proceedings of the
26th annual conference on Computer graphics and interactive techniques, Jul. 1999.

[5] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Woessner, “COVISE in the CUBE: An
Environment for Analyzing Large and Complex Simulation Data,” 2nd Workshop on
Immersive Projection Technology, 1998.

[6] F. Niebling, A. Kopecki, and M. U. Aumüller, “Integrated Simulation Workflows in
Computer Aided Engineering on HPC Resources”, International Conference on Parallel
Computing, 2011, Ghent.

[7] Snappy – a fast compressor/decompressor [Online], Available:
https://code.google.com/p/snappy/, [Accessed: 23 Feb. 2013].

[8] K. Moreland, W. Kendall, T. Peterka, and J. Huang, “An image compositing solution at
scale,” presented at the 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011, pp. 1–10.

[9] A. Wierse, U. Lang, and R. Rühle, “A system architecture for data-oriented
visualization,” Database Issues for Data Visualization, vol. 871, no. 13, pp. 148–159,
1994.

[10] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-screen projection-based
virtual reality: the design and implementation of the CAVE,” Proceedings of the 20th
annual conference on Computer graphics and interactive techniques, p. 142, 1993.

[11] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification of parallel
rendering,” Computer Graphics and Applications, IEEE, vol. 14, no. 4, pp. 23–32, 1994.

[12] E. W. Bethel, B. Tierney, J. Leigh, D. Gunter, and S. Lau, “Using high-speed WANs and
network data caches to enable remote and distributed visualization,” Supercomputing
'00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM, Nov.
2000.

[13] I. Yoon and U. Neumann, “IBRAC: Image-Based Rendering Acceleration and
Compression,” Computer Graphics Forum, Sep. 2000.

[14] B. Jeong, J. Leigh, A. Johnson, L. Renambot, M. Brown, R. Jagodic, S. Nam, and H.
Hur, “Ultrascale Collaborative Visualization Using a Display-Rich Global
Cyberinfrastructure,” Computer Graphics and Applications, IEEE, vol. 30, no. 3, pp. 71–
83, 2010.

[15] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “Scalable Remote
Rendering with Depth and Motion-flow Augmented Streaming,” Computer Graphics
Forum, vol. 30, no. 2, pp. 415–424, 2011.

[16] G. J. Han, J. R. Ohm, W.-J. Han, W.-J. Han, and T. Wiegand, “Overview of the High
Efficiency Video Coding (HEVC) Standard,” Circuits and Systems for Video Technology,
IEEE Transactions on, no. 99, p. 1, 2012.

[17] T. Richardson, “"The RFB Protocol,” realvnc.com, 2010. [Online]. Available:
http://www.realvnc.com/docs/rfbproto.pdf. [Accessed: 06-Sep.-2012].

[18] S. Woop, L. Feng, I. Wald, and C. Benthin, “Embree ray tracing kernels for CPUs and
the Xeon Phi architecture”, SIGGRAPH Talks, p. 44, 2013.

[19] D. R. Commander, “VirtualGL: In Depth Background,” virtualgl.org. [Online]. Available:
http://www.virtualgl.org/About/Background. [Accessed: Aug.-2011].

[20] D. R. Commander, “libjpeg-turbo Performance Study”, libjpeg-turbo.org. [Online].
Available: http://www.libjpeg-turbo.org/About/Performance. [Accessed: Nov.-2014].

[21] J. F. Hughes, S. K. Feiner, A. Van Dam, M. McGuire, D. F. Sklar, J. D. Foley, and K.
Akeley, Computer Graphics: Principles and Practice, 3rd ed. Addison-Wesley, 2013, pp.
1–1268.

