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1 Executive	
  summary	
  
This document contains an update to the two initial roadmaps for the CRESTA codes 
described in Deliverables D6.1.1 and D6.1.2. Description of the main developments 
and application performance improvements conducted during the project, as well as an 
update to the original roadmaps for the separate codes, are summarized in Section 1.1. 
Activities related to the co-design progress are summarized in Section 1.2 for each 
application separately. 

1.1 Summary	
  of	
  progress	
  and	
  roadmap	
  to	
  exascale	
  
The main progress and roadmap to exascale for each application can be summarized 
as follows: 

ELMFIRE: Memory consumption has been reduced during the project. Roadmap to 
exascale consists of further reducing the memory consumption and finishing the 
implementation of the 3D domain decomposition. 

GROMACS: The performance has improved during the project. In addition, an 
ensemble framework has been implemented to perform massively parallel ensemble 
computations consisting of many large parallel simulations. Roadmap to exascale 
targets hybrid task parallelism, algorithmic improvements for PME electrostatics and 
enhanced use of accelerators in the computations. 

HemeLB: The performance and scalability of the code has improved significantly 
during the project. In addition, to improve the visualization and computational steering 
capability of the code, tools from CRESTA WP5 have been integrated into the code. 
Roadmap to exascale targets code optimization towards many-core architectures and 
the use of ensemble simulations. 

IFS: The performance and scalability of the code has improved significantly during the 
project. Several preliminary investigations towards the roadmap to exascale have been 
performed, resulting in a robust plan to have an implementation of IFS for exascale via 
the use of GPGPU, task graph scheduling and a partially revised codebase. 

NEK5000: The code has been enabled to use GPU devices via OpenACC accelerator 
constructs. The achieved performance of the multi-GPU implementation is slightly 
better than a similar number of CPU nodes. Implementation of adaptive mesh 
refinement enables automated refinement of areas of interest in the computation. 
Roadmap to exascale focuses on an improvement of multi-GPU communication and an 
implementation of an efficient pressure preconditioner for adaptive mesh refinement.  

OpenFOAM: Development ceased within CRESTA after M24. Large disruptive 
changes are required in order for OpenFOAM to use exascale-level hardware. 

1.2 Summary	
  of	
  co-­‐design	
  activities	
  
The co-design activities for each application are summarized below. For experiences of 
the co-design process, see Section 2.1. 

ELMFIRE: ABO participated in Lattice Boltzmann on GPUs co-design with HemeLB 
and OpenACC co-design and performance evaluation with Cray. In addition, 
visualization of simulation results was implemented to ELMFIRE as a co-design effort 
with CRESTA WP5.  

GROMACS: GROMACS participated in 3DFFT co-design as well as nonblocking 
collective co-design with CRESTA WP4. Additionally, as an OpenACC co-design effort 
with Cray, a performance comparison between the hand-written CUDA kernels from 
GROMACS with compiler generated OpenACC kernels was accomplished. 

HemeLB: HemeLB participated in Lattice Boltzmann on GPUs co-design with ABO, co-
design related to pre –and postprocessing with WP5, and nonblocking collective co-
design with WP4.  
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IFS: IFS participated in Fortran coarrays co-design with CRAY and development 
environment co-design with TUD. Task graph co-design work on OmpSs was done in 
collaboration with European exascale projects DEEP and MB. 

NEK5000: Nek5000 participated in global communication and computational kernel 
autotuning co-design with WP3 as well as OpenACC co-design with Cray. 

OpenFOAM: OpenFOAM participated in numerical libraries co-design with WP4. 
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2 Introduction	
  
This document contains roadmaps detailing the actions needed to further develop the 
CRESTA codes towards exascale performance after the end of the project.  

For all applications, except OpenFOAM, the document also illustrates the performance 
and scalability improvements achieved during the course of the project. For 
OpenFOAM, an analysis is presented on why the code is not an exascale-capable 
code and what kind of design principles should be applied should a code with a similar 
functionality be developed. 

The roadmaps and results for the different applications are presented in the following 
chapters. The functionality and research goals of the applications can be summarized 
as follows: 

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and 
interaction between high-speed particles in a torus-shaped geometry on a three-
dimensional grid. The particles are held together by an external magnetic field. The 
objective is to simulate significant portions of large-scale fusion reactors like JET or 
ITER. 

GROMACS: is a molecular dynamics code which is extensively used for simulation of 
biomolecular systems. Useful investigation of this kind of system is typically limited by 
computational capacity. The limitations relate both to system sizes and in particular 
time duration of the processes of interest. Efficient implementation of ensembles of 
simulation are also needed in order to obtain statistical validity. 

HemeLB: is intended to form part of a clinically-deployed exascale virtual physiological 
human. HemeLB simulates blood flow in measured blood vessel geometries. The 
objective is to develop a clinically useful exascale tool. 

IFS: is the production weather forecasting application used at the European Centre for 
Medium Range Weather Forecasts (ECMWF). The objective is to develop more 
reliable 10-day weather forecasts which can be run in an hour or less. 

NEK5000: is an open-source code for the simulation of incompressible flow in complex 
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000. 

OpenFOAM®: is an open source application for computational fluid dynamics (CFD). 
The program is a “toolbox” which provides a selection of different solvers as well as 
routines for various kinds of analysis, pre- and post-processing. Besides general 
development of the code, within this project the focus will be on a specialized code for 
turbo machinery. The objective is to simulate a whole hydraulic machine on exascale 
architectures. 

2.1 Co-­‐design	
  process	
  
Co-design has been used for decades to aid software and hardware design [1]. One of 
the main questions at the beginning of the project was whether the co-design idea can 
be made to work. To answer the question in short: yes, the co-design process as it was 
implemented in the project was clearly beneficial to the CRESTA applications. For 
similar discussion with a broader focus on how the co-design process can be made to 
work, see [2]. 

The obtained benefits of co-design differed somewhat between the applications. Also, 
in order to have a less unequivocal picture, one needs to consider the opposite, i.e., 
what were the benefits of the co-design applications to the other parts of the project? 
Both of these viewpoints are discussed in the following two subsections, albeit with 
somewhat more focus on the benefit to the applications themselves.  

2.1.1 Application	
  development	
  and	
  the	
  co-­‐design	
  process	
  
In this subsection, we highlight some of the cases where application development 
benefited from the co-design collaboration.  
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HemeLB,	
  computational	
  steering,	
  domain	
  decomposition	
  and	
  visualization	
  
With WP5, an improved toolkit for visualization and computational steering was 
implemented to replace the old visualization toolset in HemeLB. In addition, to improve 
the partitioning, domain decomposition libraries from WP5 were used to implement a 
prototype of a partitioner for sparse geometries. 

IFS,	
  Fortran	
  coarrays	
  
With Cray, overlapping of communication and computation in the context of OpenMP 
parallel regions was implemented in IFS. As using Fortran coarrays within OpenMP 
had not been attempted before in a production application, close collaboration with 
Cray was essential both in the design phase as well as in the implementation process 
itself. 

Nek5000,	
  autotuning	
  of	
  computational	
  kernels	
  
With WP3, autotuning work on key computational kernels was performed. The new 
autotuned kernels improve the computational performance over the previously used 
handwritten kernels. 

2.1.2 Applications	
  as	
  co-­‐design	
  process	
  vehicles	
  
In this subsection, we highlight some of the cases where co-design applications had a 
clear benefit to the systemware developers.  

Cray,	
  comparison	
  of	
  GROMACS	
  kernels	
  
GROMACS developers provided their handwritten CUDA compute kernels to Cray for 
comparison with functionally identical kernels written with OpenACC. The work 
provided improvements to the register usage of the Cray OpenACC compiler, 
improving the performance of the compiler-generated code.  

WP5,	
  autotuning	
  of	
  Nek5000	
  computational	
  kernels	
  
Nek5000 developers provided their key compute kernels to WP3 for autotuning work. 
The kernels provided a realistic test bed for autotuning tools developed in WP3 and 
showed that using computer generated parameter searches can provide actual 
performance benefits in production applications. 

2.1.3 CRESTA	
  application	
  developer	
  perspective	
  to	
  co-­‐design	
  process	
  
In this subsection, we describe from an application developer perspective how the co-
design process was implemented within CRESTA.  

For application developers in CRESTA WP6, establishing a functional co-design 
collaboration with another member of the project was, at least in some cases, a 
relatively long process. Formation of a co-design team was done as follows: 

1. Establish contact with the other members of the co-design team 
2. Make a collaboration plan 
3. Formally establish the co-design team 

Usually the co-design work was initialized via personal contacts established during 
CRESTA collaboration meetings. The key issue was to get the developers to know the 
problem area the potential candidates for collaboration were working upon. 
Establishing personal contacts via collaboration meetings was an effective but not 
necessarily the fastest method for building the co-design teams, as people new to the 
project were mostly unknown outside of their own work package until the next, typically 
biyearly, collaboration meeting had been held. Further details of the work were then 
agreed upon after the meeting via email, mailing lists, conference calls or even 
personal visits. This included the construction of a plan on how to progress with the 
newly defined co-design task.  

Finally, whenever deemed appropriate, a co-design team was formally formed to 
handle the co-design task. Most of the communication was established via continuous 
personal contacts with the involved parties. Personal visits and small meetings were 
also used to work together and better agree upon outstanding issues, although, due to 
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geographical separation of the project members and the associated travelling 
overhead, such collaboration methods were used rather sparingly.   

The results of the co-design teams were presented during CRESTA collaboration 
meetings and, during later stages of the project, via CRESTA white papers. Some of 
the presentations led to co-design work being extended to include more partners to 
benefit from the results. In some cases, when the task of the co-design team was 
finished, the team disbanded as being no longer necessary. 

2.1.4 Conclusions	
  on	
  the	
  co-­‐design	
  process	
  
When interviewed at the end of the project, all application developers who had been 
involved in co-design considered the experience very positive. Many commented that 
having domain experts from another field significantly sped up the development 
process and cut down implementation time. For instance, people involved in the 
Fortran coarrays co-design effort argued that the development would have been much 
more difficult (or even near to impossible) without the help of the Cray experts.  

In CRESTA, the start-up cost to have a productive co-design effort was non-negligible. 
Thus avoiding projects which are too short in duration is recommended in order to 
avoid unnecessary overhead. In order to speed up the formation of the co-design 
teams with a mixed base of people, we recommend establishing an easily accessible 
list which describes the expertise, contact details and co-design efforts in which each 
person within the project is involved. Organizing several co-design meetings early on in 
the project to establish personal communication channels is highly recommended as 
well.  

Mini applications mimicking the behavior of the full application were used in CRESTA 
to study whether or not and idea was worth pursuing in an actual application. Relying 
solely on mini applications is not recommended, however, as it may not give an 
accurate view of the difficulties faced when implementing changes to a real world 
production code. Such difficulties were demonstrated in CRESTA by the rather 
straightforward use of OpenACC directives to port the Nekbone benchmark to use 
GPGPUs. This was followed by a rather long but eventually successful process of 
porting the actual Nek5000 application to GPGPUs with OpenACC. 

To conclude discussion on co-design within CRESTA, we state that the co-design idea 
was a powerful tool for efficiently conducting cross-disciplinary work. According to the 
experiences gathered by application developers, we recommend the use of co-design 
as a tool in other exascale software efforts as well. 

2.2 References	
  
[1] Sanders, E. B. N. and Stappers, P. J. Co-creation and the new landscapes of 

design. Co-design, 4(1), 5-18. 2008. 
[2] Dongarra, J. et al. The international exascale software project roadmap. 

International Journal of High Performance Computing Applications, 
1094342010391989. 2008. 

2.3 Glossary	
  of	
  Acronyms	
  
ACML AMD Core Math Library 

AMI Arbitrary Mesh Interface 

AMR Adaptive Mesh Refinement 

CAF Coarray Fortran 

CSC CSC – IT Center for Science Ltd. 

CPU Central Processing Unit 

DLR Deutschen Zentrums für Luft- und Raumfahrt 

ECMWF European Centre for Medium-Range Weather Forecasts 
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ECSE Embedded Computer Software Engineering 

ENDA Ensemble Data Assimilation System 

EPCC Edinburgh Parallel Computing Centre 

EPS Ensemble Prediction System 

FFT Fast Fourier Transform 

GGI General Graphics Interface 

GNU GNU's Not Unix! 

GPL GNU General Public License 

GPU Graphics Processing Unit 

HPC High Performance Computing 

INCITE Innovative and Novel Computational Impact on Theory and Experiment 

I/O Input/Output 

ITER International Thermonuclear Experimental Reactor 

JET Joint European Torus 

KTH Kungliga Tekniska Högskolan 

LB Lattice Boltzmann 

LGPL GNU Lesser General Public License 

MPI Message Passing Interface 

OpenACC Open Accelerators 

OpenMP Open Multiprocessing 

PETc Portable, Extensible Toolkit for Scientific Computation 

PGAS Partitioned Global Address Space 

PME Particle Mesh Ewald 

SIMD Single Instruction, Multiple Data 

UCL University College London 

USTUTT University of Stuttgart 
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3 Elmfire	
  
Elmfire is a particle-in-cell code that simulates the movement and interaction between 
extended gyrokinetic particles moving at high speed in a torus-shaped geometry on a 
three dimensional grid. The particles are held together by a strong external magnetic 
field. 

Elmfire approximates the Coulomb interaction between particles by solving a global 
electrostatic field on a grid, using the particle charges as sources. Elmfire then 
advances particles in time by free streaming along the magnetic field line and particle 
drift perpendicular to the magnetic field. Typically, time steps correspond to 30-50ns of 
real time. 

The time step based simulation in Elmfire can be roughly divided into seven parts: 

• Perform collisions between particles close to each other; 
• Using a 4th order Runge-Kutta, calculate particle movements in continuous space 

during the time step based on the electric field; 
• Collect grid cell charge data from the particles for the electrostatic field; 
• Combine and split the grid charge data so each processor has a smaller part of it; 
• Construct a large modified gyro kinetic Poisson equation based on the data and 

solve it in parallel; 
• Calculate additional movement caused by magnetic field drift of particles based on 

the acquired electric field; 
• Write diagnostics output. 

Presently, the most CPU-heavy part of the code is calculating particle movements, but 
as each processor is assigned a fixed number of particles this scales linearly with the 
number of processors and is therefore not the most significant issue when scaling to 
larger systems. The most problematic part is the collection and distribution of grid cell 
charge data. In the current version each processor can have its assigned particles 
moving in any part of the torus, leading to all processors contributing charge data to all 
grid cells in the system. As a consequence each processor has the full electrostatic 
grid data and a huge sparse matrix, the size of which is the number of grid cells 
squared, for collecting charge data. To place this in context, simulating ITER with this 
version of the code would require 640K cores, each with 28TB of memory. 

To reduce the memory consumption, a new domain decomposition algorithm has been 
written for Elmfire within the CRESTA project. This has been a significant re-design as 
it has involved changes to almost all the components of Elmfire. Within this, the 
simulation volume is divided among cores to harmonize with the equations of motion. 
The domain decomposition is in line with high particle speeds in the toroidal direction. 
The result is a diminished memory usage per core, as the simulation volume 
considered by one core has been reduced drastically.  

Within Elmfire all the cores collaborate to solve the Poisson equation and further 
optimization has been achieved through a co-design process with WP4 to implement a 
modified version of the Poisson equation, to further enhance the memory utilization. 
Once the grid cell charge data has been combined and split among the processors, 
each processor can construct its own part of the Poisson equation individually. The 
Poisson equation is then solved in parallel using PETSc. The solution (the electric 
potential) is then distributed to all processors to be used in the next time step.  

While further memory improvements can and will be made in the future, the 
implementation of a domain decomposition version of Elmfire has significantly 
decreased the memory utilization. 
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3.1 Summary	
  of	
  the	
  previous	
  roadmaps	
  
Task Scheduled date Status 

3D domain decomposition M22 Completed 

Processor load balancing M28 Completed 

Memory usage for binary 
collisions 

M36 Completed 

Parallel file writing M36 Completed 
Table 3.1 Summary of the previous roadmaps for Elmfire 

3D	
  domain	
  decomposition	
  
Prior to CRESTA, the code implemented as 1D decomposition in the toroidal direction 
with a full electrostatic grid on each processor, with all processors having particles in 
any given grid cell. During CRESTA we have implemented a 3D domain decomposition 
where each processor owns a subgrid of the electrostatic grid and all particles within 
these grids. This diminishes the memory consumption of each processor which 
otherwise would grow with grid size. The domain decomposition is streamlined with the 
time evolution of the particles in the sense that very large particle velocities are 
common in the toroidal direction (contained fully in the domain of one core) while 
velocities are much smaller in the cross sectional directions (particles may be handed 
over to cores owning neighboring grid volumes). At the same time each processor 
needs only a small part of the electrostatic grid close to its own volume in order to be 
able to propagate particles during one time step.  

Processor	
  load	
  balancing	
  
Each processor is allocated approximately the same number of particles according to 
the initial assumed particle distribution, denser in the centre, fewer particles at the outer 
surface, by allocating full circles of subgrids in the toroidal direction.  

Memory	
  usage	
  for	
  binary	
  collisions	
  
Previously Elmfire communicated particle locations in order to simulate particle 
collisions. In the new domain decomposition, processors automatically contain all 
particles in any given grid cell and thus binary collisions can be simulated with no 
communication.  

Parallel	
  file	
  writing	
  
Within CRESTA, Elmfire has been written to use hdf5 file I/O for dumping aggregated 
data (densities, energies, etc). Future plans beyond CRESTA are to include snap-
shotting particles in Elmfire for restart purposes using parallel file I/O. This is planned 
for the year 2015.  

3.2 Achievements	
  towards	
  remaining	
  tasks	
  
Task Achievement 

Parallel file writing All file I/O now use the hdf5 library 
Table 3.2 Achievements towards remaining tasks from the previous roadmaps for Elmfire 

3.3 Roadmap	
  to	
  exascale	
  
Task Estimated effort Status 

Rewriting memory 
allocation and structure for 
the Poisson equation 

M18 Ongoing 

Table 3.3 Roadmap to exascale for Elmfire 

3.3.1 Rewriting	
  memory	
  allocation	
  and	
  structure	
  for	
  Poisson	
  equation	
  	
  
Prior to CRESTA, each processor allocated memory for the full Poisson grid. The 
domain decomposition developed within CRESTA ensures that each processor owns a 
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small part of the Poisson grid. Future work will consider additional optimizations to 
further reduce the amount of allocated memory per processor.  

3.4 Application	
  performance	
  and	
  scalability	
  
Performance runs have been carried out with the new domain decomposition code on 
half a billion particles on up to 4096 cores on Sisu (Cray XC40). The numbers below 
describe weak scaling where we increase the number of grid points while keeping the 
number of particles per grid point constant for load balancing reasons. From a physical 
point of view the increase in grid size corresponds to larger tokamak simulation 
volumes, the largest being 256x256 grid points in the cross section and 16 grid points 
along the toroidal direction corresponding roughly to a fusion reactor with cross section 
diameter of 1 m. 

Cores Grid size # of particles # of particles/core 

128 32x64x16 14329856 111952 

256 64x64x16 26005504 101584 

512 64x128x16 52692992 102916 

1024 128x128x16 107876352 105348 

2048 128x256x16 206671872 100914 

4096 256x256x16 444991488 108640 

 

These results demonstrate that memory consumption per core is currently almost 
proportional to the number of particles, a significant achievement and an original 
objective set within CRESTA. 

 
Figure 3.1 Elmfire memory scalability per core in a weak scaling test for a model problem 

 

Beyond CRESTA, future performance studies will look at even larger systems. In 
particular, during 2015 the plan is to investigate particle collisions. 
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3.4.1 Summary	
  of	
  the	
  performance	
  improvements	
  achieved	
  
The implementation of a 3D domain decomposition has resulted in improved memory 
consumption and memory organization, and hence better scalability. This was the main 
objective of the work within CRESTA as memory consumption was a significant block 
towards scaling this code to future (exascale) systems. In addition co-design 
optimization work with WP4 on the linear solver has improved the code’s overall 
performance. Elmfire has been written to use hdf5 file I/O for dumping aggregated data 
(densities, energies, etc). Finally, the original code was a “patch-work” of added 
features, and significant work has gone into rewriting the code for better readability and 
structure.  

3.5 References	
  
[1] Exemplar scientific simulations, CRESTA Deliverable D6.4. 
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4 Gromacs	
  
GROMACS is a major open source code that performs classical molecular dynamics 
simulations based on interactions between particles moving in space, typically for 
biomolecular systems. It has been developed for over 15 years, initially with a large 
focus on the highest possible single-core performance. Over the last few years we 
have made a complete overhaul of the parallelization approach and the code currently 
exhibits some of the best relative scalability in the field. 

The main challenge for classical molecular dynamics in general - and GROMACS in 
particular - is that it relies on integration of Newton’s equations of motion, and high 
performance therefore requires very fast iterations over integration time-steps. This has 
largely driven the past 20 years of development and thus the current algorithms are 
focused on providing simple interaction forms to reduce the floating-point instruction 
bottleneck.  

Historically, runtime for codes performing molecular dynamics was completely 
dominated by the evaluation of interactions between particles and, at least in principle, 
this lends itself very well to parallelization. Unfortunately the last 20 years of 
optimization focused on algorithms to avoid floating-point operations has resulted in 
complex data structures and inhomogeneity in interaction density over space that 
makes efficient parallelization challenging. In this regard, GROMACS is a particular 
challenge since the single-core performance is significantly higher than many other 
codes and thus the time spent on communication is relatively larger [5]. 

The work in GROMACS focuses on achieving significant improvements for real 
applications. From the end user perspective, there are three overall important 
objectives to advance the state-of-the-art for applications 

(i) Reduce the wall-clock time per time-step of iteration in order to achieve 
longer simulations. 

(ii) Handle much larger application systems to model e.g. mesoscopic 
phenomena. 

(iii) Improve the accuracy and the results for small application systems through 
massive sampling. 

All three aspects are critically important, but require slightly different approaches. The 
wall-clock time for a single time-step iteration is already today in the range of a few 
milliseconds on some systems, and even though strategies exist to improve this 
further, we do not believe that it is possible to push more than one order of magnitude 
beyond today’s standard. In contrast, handling much larger systems is easier (although 
not trivial) from the point of view of a parallelization algorithm. Unfortunately it will 
involve challenges related to handling of data when a single master node can no longer 
control all of the input and output, both when starting the execution and when 
performing checkpointing or output. Finally, for small systems, the main approach will 
be the use of ensemble techniques to handle thousands of small simulations each of 
which will use thousands of cores. 

4.1 Summary	
  of	
  the	
  previous	
  roadmaps	
  
Task Scheduled 

date 
Status 

Benchmarking new Gromacs releases, and GPU coding M18, M30 Completed 

Multi-grid solvers for efficient PME electrostatics  M36 Ongoing 

Task-based parallelism M36 Ongoing 

Efficient large-scale I/O M36 Ongoing 

Ensemble computing & parallel adaptive molecular dynamics M36 Completed 
Table 4.1 Summary of the previous roadmaps for Gromacs 
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Benchmarking	
  new	
  Gromacs	
  releases,	
  and	
  GPU	
  coding	
  
The Gromacs 5 release was completed, and has been benchmarked for use in 
upcoming publications. The CRESTA benchmark suite was updated to use the features 
implemented during the CRESTA project. Through our ongoing collaboration with 
NVIDIA, CUDA features unveiled at SC'14 were already supported in the Gromacs 
development branch. 

Multi-­‐grid	
  solvers	
  for	
  efficient	
  PME	
  electrostatics	
  
Changes to Gromacs to be able to use ExaFMM (http://www.bu.edu/exafmm/) for 
multipole-based long-range electrostatics are underway. The dominant implementation 
of full electrostatics used by domain scientists has been the particle-mesh Ewald 
method (PME), and the code in Gromacs for full electrostatics treatments needs 
extension and generalization to permit multiple implementations to co-exist. 

Task-­‐based	
  parallelism	
  
Extensive preparations for full-scale conversion to task parallelism are in progress. We 
have identified Intel's Thread Building Blocks (http://www.threadbuildingblocks.org) as 
the tasking framework most likely to deliver performance portability in Gromacs. It is 
implemented as a C++98 library, has a permissive source-code license, and seems 
likely to provide control at sufficiently fine grain to keep per-task overheads to at most 
around 1 microsecond (required for improving strong scaling with Gromacs). We have 
submitted numerous bug reports to Intel to improve the support in TBB with non-Intel 
compilers. 

Efficient	
  large-­‐scale	
  I/O	
  
The exascale-suitable implementation of the TNG compressed output-file format [7][8] 
was completed in Gromacs 5. Like other I/O implementations in Gromacs, it currently 
runs in serial. This is not yet a critical problem to solve, since typically only a small 
fraction of the atoms in the system are of interest and the period with which statistically 
independent output is available is only every thousand or more MD steps. It has been 
planned for the I/O code to run in parallel as a non-blocking task in the new tasking 
framework.  

Ensemble	
  computing	
  &	
  parallel	
  adaptive	
  molecular	
  dynamics	
  
Copernicus 2.0 has been released, [3], and is in use in production simulations. For 
instance, by using Copernicus we have been able to scale a protein folding problem to 
5730 cores – reducing time-to-solution from 30 days to 72 hours. Copernicus currently 
includes implementations of the following adaptive sampling algorithms: Markov state 
modelling, adaptive free energy perturbation and a string method for minimum free 
energy pathways.  Each of these typically scales to hundreds or thousands of 
simulations in parallel, each of which itself can be parallelized to tens to hundreds of 
cores, making simulations with more than 1M cores feasible.  

4.2 Achievements	
  towards	
  remaining	
  tasks	
  
Task Achievement 

Multi-grid solvers for 
efficient PME 
electrostatics  

Early implementation using ExaFMM for full 
electrostatics. 

Task-based parallelism Planning, core infrastructure changes. 

Efficient large-scale I/O Implementation of the actual efficient I/O. 

Improved domain-
decomposition halo 
exchange 

First implementation completed and under testing. 

Table 4.2 Achievements towards remaining tasks from the previous roadmaps for Gromacs 
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4.3 Roadmap	
  to	
  exascale	
  
Task Estimated effort Status 

New decomposition for 
bonded interactions 

1 PM Code in progress 

Task-based parallelism 18 PM Ongoing 

Efficient large-scale I/O 1 PM Ongoing, depends on 
task-based parallelism 

Improved domain-
decomposition halo 
exchange 

1 PM Under testing 

Multi-grid solvers for 
efficient PME 
electrostatics  

6 PM Ongoing 

Table 4.3 Roadmap to exascale for Gromacs 

4.3.1 New	
  decomposition	
  for	
  bonded	
  interactions	
  
The existing dynamic load balancing algorithm in Gromacs is based on adjusting the 
size of the spatial domains decomposed onto MPI ranks. After benchmarking the 
enhancements supported by CRESTA, it became clear that the existing dynamic load 
balancing algorithm was not able to perform well enough on important scientific 
problems.  

As an example, consider simulations of a protein embedded in a lipid membrane 
solvated in water, which are especially difficult in this sense. The distribution of the 
interactions is heterogenous, water is mostly electrostatic with some van der Waals 
required, lipid is normally only van der Waals and bonds but on the other hand the 
protein itself needs all three. Other kinds of simulations can have even bigger 
problems. The obvious course of action, as implemented in Gromacs 4.6, was to 
assign multiple cores to an MPI rank using OpenMP and hope that sufficiently large 
spatial domains can be used in order to alleviate the problem in practice. However, our 
hybrid MPI/OpenMP implementation was slower on CPU-only machines than a pure 
MPI at low-to-moderate scale and was useful only at the strong-scaling limit. This 
suggested the following steps: 

• Look for improved implementations for distributing the workload within the cores 
of MPI ranks (to be discussed below). 

• Attempt a redistribution of work not based on spatial locality. 

In Gromacs 4.6 and 5, the spatial domains (i.e., the MPI ranks) which primarily handle 
water molecules have no bonded-interaction work to do, due to the water models being 
predominantly rigid. Cores of such ranks may lie completely idle. This is particularly a 
problem if accelerators are used and if the dynamic load balancing has assigned them 
an abnormally large spatial domain, although partial non-offload of short-range work 
would alleviate the problem somewhat. The domains that are mostly protein or lipid 
have a minimum size dictated by the implementation details of the non-bonded 
interactions (i.e., the short-ranged cut-off), so there is a minimum amount of bonded 
work that can only be performed on that rank. Load balancing problems arising from 
waiting for that work to complete can then limit the overall throughput. 

Work is underway to redistribute bonded work evenly across a subset of MPI ranks, 
using non-blocking communication overlapped with short-range or PME work. This will 
improve performance through better load balancing, even if it does not directly improve 
strong scaling. Taking full advantage of such possibilities may require a better task-
parallel implementation, as discussed below.  
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4.3.2 Task-­‐based	
  parallelism	
  	
  
Extensive preparations for full-scale conversion to task parallelism are in progress. 

Conversion of the code base to compile as C++ is underway; now most of the ~1 
million lines of performance-sensitive code compiles as C++. The conversion has 
exposed numerous minor bugs, and our continuous integration machinery runs 
valgrind, cppcheck, clang's static analyzer, Thread Sanitizer and Address Sanitizer, 
and also runs on five major compilers and five major operating systems in a bid to 
ensure highly portable, correct code. 

Code transformations to express the bonded interaction kernels as tasks and the PME 
implementation in a task-parallel pipelined manner are underway. These 
transformations will make available some computation that can overlap in a task-
parallel implementation once MPI 3 non-blocking collectives are deployed in PME. 

These tasks can then be implemented and scheduled using a tasking framework, 
which will finally allow performance measurements of the suitability of TBB (or perhaps 
OpenMP or others). 

Once these lessons are learned, the best path for expansion of the tasking scheme to 
other parts of the MD loop (update, constraints, short-ranged interactions) will become 
more clear. 

4.3.3 Efficient	
  large-­‐scale	
  I/O	
  
When the user schedules periodic output of simulation information, the data can be 
packaged into a task and executed at low priority. For example, many cores currently 
lie idle during the hard-to-parallelize update, constraint and neighbour-search phases. 
This requires extra memory, but this is not a problem for MD simulations. It remains to 
be seen whether 

• low-priority preprocessing tasks, followed by non-blocking transfer of output 
data to a master MPI rank, followed by asynchronous serial file I/O, or 

• non-blocking MPI transfer of raw output data to a master MPI rank, followed by 
low-priority preprocessing tasks, followed by asynchronous serial file I/O, or 

• low-priority preprocessing tasks, followed by non-blocking parallel I/O 

is fastest in practice. The work to implement such a scheme is most efficiently done 
when the tasking scheme is in place (at which point, relaxing the serialization point 
might become truly necessary!) 

4.3.4 Improved	
  domain-­‐decomposition	
  halo	
  exchange	
  
The spatial domains that are the primary decomposition of work to MPI ranks in 
Gromacs need to exchange information on positions and forces of atoms of interest to 
neighbouring domains. This has to happen at each MD step. The implementation in 
Gromacs 4.0 used pulses along the three spatial grid dimensions to up to two 
successive neighbouring ranks [5]. This has been re-written to do a more classical halo 
exchange that communicates directly with the (up to) 7 neighbours in the “eighth-shell” 
decomposition used [4]. The new implementation directly anticipates improvements in 
intra-rank performance expected from task-parallelism, and prepares for FMM support 
and completion of more features of the Verlet cut-off scheme introduced in Gromacs 
4.6 [8]. 

4.3.5 Multi-­‐grid	
  solvers	
  for	
  efficient	
  PME	
  electrostatics	
  
Exascale performance in MD on scientific problems of interest will require the use of 
implementations for modelling long-ranged interactions that scale linearly with the 
number of cores. For instance, current implementations of PME require all-to-all 
communication patterns that will not scale well enough. The fast multipole method 
(FMM) has long been identified as a strong candidate to replace PME, because the 
performance of its implementation should scale linearly both in the number of particles 
and the number of cores. Until recently, the lack of available high-quality FMM 
implementations sufficiently general to be adapted for use in MD has impeded the 
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progress. Two implementations of the FMM in Gromacs are now underway (only one is 
supported by CRESTA). These changes require significant adaptation of the existing 
Gromacs machinery for computing short-ranged interactions within a sphere to perform 
the components of the point-to-point component of the FMM in a (typically) non-
spherical region.  

4.4 Application	
  performance	
  and	
  scalability	
  
4.4.1 Efficient	
  strong	
  scalability,	
  model	
  problem	
  
Trends in Gromacs strong scaling over the liftetime of CRESTA on an ion-channel 
benchmark case can be seen in Figure 4.1. The introduction of the Verlet scheme and 
the associated AVX support account for a large part of the improvements in 
performance in Gromacs 4.6 [8]. The availability of OpenMP in Gromacs 4.6 permits 
that scaling to extend to higher core counts, effectively relaxing the geometric 
constraints on the domain decomposition. Gromacs 5.0 adds support for the AVX2 
instruction set, which works very well, though at higher core counts load imbalance and 
perhaps network configuration dominate the performance. 

 
Figure 4.1 Scaling performance of Gromacs 4.5, 4.6 and 5.0 on Sandy Bridge (SNB) and Haswell 
(HSW) x86 platforms. Measurements with Gromacs 4.5 and 4.6 were done on triolith (8-core 2.2GHz 
Sandy Bridge nodes); measurements with Gromacs 5 were done on a machine with 2 16-core 
2.3GHz Haswell processors per node. The simulation system was a 150K atom ion channel, using 
PME and 2fs time steps.  

Strong scaling of Gromacs on BlueGene/Q also performs well on a range of 
benchmark cases (found in the CRESTA benchmark suite), as seen in Figure 4.2. In 
the maximally favourable case of the LJPME water simulation, where there is no 
external network noise, no per-rank load imbalance and a communication network 
which is relatively strong compared to the computing power of the processor, Gromacs 
5.0 can scale down to 32 atoms/core. Higher throughput and lower scaling is available 
on commodity x86 hardware, however (see Figure 4.1). 
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Figure 4.2 Scaling performance of Gromacs 5 on BlueGene/Q on three model simulation systems 

Gromacs also has a first-class CUDA port, whose strong scaling performance is 
excellent. In Figure 4.3, we see the previously-reported scaling of the PME model in 
Gromacs 4.6 on GPUs on a range of similarly-sized model systems [2]. 

 
Figure 4.3 Strong scaling performance of Gromacs 4.6 on nodes with Ivy Bridge CPUs and two K20 
GPUs. 
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4.4.2 Efficient	
  weak	
  scalability,	
  model	
  problem	
  
Improvements in weak scaling capability is not a primary target for Gromacs, because 
the physical size and model resolution of scientific problems is essentially fixed. 
Nonetheless, for model physics with linear scaling, and apart from the known issue with 
writing trajectory output, weak scaling has been an essentially solved problem since 
Gromacs 4.5 [2]. 

Even for a non-linear scaling algorithm, such as the Lennard-Jones PME 
implementation in Gromacs 5, useful weak scaling can be seen in model problems 
such as the water simulation shown in Figure 4.4. 

 
Figure 4.4 Gromacs weak scaling performance on BlueGene/Q on a non-linear-scaling physics 
model (combined Lennard-Jones+Electrostatic PME on a large box of water) 

4.4.3 Efficient	
  strong	
  scalability,	
  exemplar	
  scientific	
  simulation	
  
Efficient strong scalability of Gromacs on an exemplar scientific simulation was 
demonstrated in CRESTA Deliverable 6.4 (see Table 4.6 and Figure 4.3) [10]. 

4.4.4 Efficient	
  weak	
  scalability,	
  exemplar	
  scientific	
  simulation	
  
Efficient weak scalability of Gromacs on an exemplar scientific simulation can be seen 
in CRESTA Deliverable 6.4 (see Table 4.6 and Figure 4.3) [10]. 

4.4.5 Summary	
  of	
  the	
  performance	
  improvements	
  achieved	
  
The two major reasons behind the performance improvements in molecular dynamics 
simulations in Gromacs achieved during CRESTA are: 

• Rewrite of the short-ranged kernels and supporting neighbour-search code and 
the associated data structures, in order to directly and efficiently target the 
hardware characteristics of both CPU and accelerator cores [9]. 

• Addition of the support for hybrid MPI/OpenMP parallelism. 

This has exposed further critical problems with load balance and intra-rank task 
scheduling, and exacerbated the known problems with communication load of both 
short- and long-ranged models. Work is underway to alleviate these. 

The associated Copenicus software [4] makes it easy to deploy ensemble-style scaling 
of Gromacs on peta-to-exascale resources, and forms a key part of our exascale MD 
strategy. Since in exemplar scientific problems weak scaling is rarely of interest, the 
strong scaling will start to approach limits of available parallelism for fixed-size 
problems. 
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Also during the lifetime of the CRESTA project, ports to C++98 and the CMake build 
system were undertaken and an elaborate continuous integration testing infrastructure 
was built. A community code-review policy was introduced and works very well. 
Continued improvements in Gromacs performance would not be possible without such 
an infrastructure [3]. 

4.5 References	
  
[2] Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, 

Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E, GROMACS 4.5: a 
high-throughput and highly parallel open source molecular simulation toolkit. 
Bioinformatics 29(7), 845-54 (2013). 

[3] Pall S, Abraham MJ, Kutzner C, Hess B, Lindahl E, Tackling exascale software 
challenges in molecular dynamics simulations with GROMACS, Exascale 
Applications and Software conference EASC14, in press (2014). 

[4] Pronk et al., “Copernicus: a new paradigm for parallel adaptive molecular 
dynamics”, SC11 High Performance Computing, Networking, Storage and 
Analysis (SC), 2011 International Conference for. IEEE, 2011. 
http://www.copernicus-computing.org.  

[5] Bowers, K.J., Dror, R.O., Shaw, D.E.: Overview of neutral territory methods for 
the parallel evaluation of pairwise particle interactions. Journal of Physics: 
Conference Series 16(1), 300 (2005), http://stacks.iop.org/1742-
6596/16/i=1/a=041. 

[6] Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: Algorithms 
for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. 
Theory Comput. 4(3), 435–447 (2008) 

[7] Spångberg D., Larsson D.S.D., van der Spoel D.: Trajectory NG: portable, 
compressed, general molecular dynamics trajectories. J. Mol. Mod. 17(10), 
2669-2685 (2011) http://dx.doi.org/10.1007/s00894-010-0948-5.  

[8] Lundborg M., Apostolov R., Spangberg D., Gardenas A., van der Spoel D., 
Lindahl E.: An efficient and extensible format, library, and API for binary 
trajectory data from molecular simulations. J. Comput. Chem. 35(3), 260-9 
(2014) http://dx.doi.org/10.1002/jcc.23495.  

[9] Pall, S., Hess, B.: A flexible algorithm for calculating pair interactions on SIMD 
architectures. Computer Physics Communications 184(12), 2641–2650 (2013), 
http://www.sciencedirect.com/science/article/pii/S0010465513001975.  

[10] Exemplar scientific simulations, CRESTA Deliverable D6.4. 



 

© CRESTA Consortium   Page 19 of 73 

 

5 HemeLB	
  
HemeLB is a tool for fluid flows in complex sparse geometries.  Its main focus is 
simulating blood flow in parts of the cerebral arterial network. HemeLB employs an 
implementation of the lattice Boltzmann (LB) algorithm which, due to its locality, is 
intrinsically easy to parallelize. HemeLB uses MPI for communication and has been 
shown to have good scalability up to over 32k CPU cores. 

5.1 Summary	
  of	
  the	
  previous	
  roadmaps	
  
Task Scheduled date Status 

Initial Roadmap 

Visualisation and Steering M36 Completed 

Pre-processing M36 Completed 

Introspection M36 Completed 

Roadmap update 1 

Single core performance M20 Completed 

Domain decomposition M24 Completed and extended 
(see 3.3) 

Hybrid parallelism M30 In progress 

Steerable parameter 
extraction 

M30 Cancelled after partial 
result. 

Visualisation M36 Completed 

Introspection M36 Completed 
Table 5.1 Summary of the previous roadmaps for HemeLB 

Visualisation	
  and	
  Steering	
  
To enable in situ visualisation and steering of HemeLB at the exascale, using 
visualisation libraries from WP5 partners. 

Pre-­‐processing	
  
To enhance HemeLB’s domain decomposition such that it is viable at exascale. 

Introspection	
  
Exascale applications will need to be able to monitor their own execution to be able to 
report and optimise their performance and the environment. 

Single	
  core	
  performance	
  
Based on our benchmarking and comparison to other Lattice-Boltzmann codes, we 
believe that there is scope to increase the single-core performance of HemeLB 
significantly. This will be undertaken with a fairly conventional profile-optimize cycle. 
We will be particularly interested in exploring the effect of changing the data layout to 
improve memory behaviour. This last piece of work will be undertaken in conjunction 
with the hybridisation task below. 

Domain	
  decomposition	
  
Based on recent measurements, we see that some processes end up with a very large 
number of neighbours (~100) compared to the average (~25). These processes cause 
a load imbalance that is the primary cause of the sub-linear scaling we see at 32k 
cores. We are working with partners in WP5 to trial the PPStee domain decomposition 
library in order to improve this. 

Hybrid	
  parallelism	
  
Based on the report by Alan Gray which was the main output of our co-design work, we 
will not pursue OpenACC until the software is more mature. However he has shown 
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that OpenMP is much more feasible and we will work on this further. The effect of 
different memory layouts will be explored in detail here. 

Steerable	
  parameter	
  extraction	
  
In HemeLB we have implemented a property extraction framework that allows the user 
to define regions of interest for output, as well as which fields to output and at what 
frequency. Currently this must be specified at simulation start. We propose to make this 
part of the code steerable at run time, in order to allow the user to quickly home in on 
interesting features which can be recorded for more detailed off-line analysis. 

Visualization	
  
We will continue to work with WP5 partners to explore how to couple their visualisation 
software with HemeLB. 

Introspection	
  
We have implemented key introspection abilities ourselves which are sufficient for our 
needs. We will continue to monitor developments within this arena, but our judgment is 
that applications will need to delegate the responsibility of monitoring and acting to 
runtime systems, since the complexity and variability of future systems will likely be too 
large for an application to find a generic solution. We have therefore paused this 
activity until suitable technology is available and there is a compelling need for it. 

5.2 Achievements	
  towards	
  remaining	
  tasks	
  
Task Achievement 

Hybrid parallelism In progress. We have performed a preliminary study with 
OpenMP as well as OpenACC. The end result of the 
study was that in particular an OpenACC port is 
challenging for a C++ code like HemeLB. Based on this 
outcome, we are now preparing a major port to many-
core architectures. We are also pursuing hybrid 
parallelism using ensemble techniques (see 3.3), and 
have investigated the use of non-blocking collectives in 
HemeLB. 

Steerable parameter 
extraction 

The HemeLB steering client has previously been 
recommisioned and benchmarked for performance. For 
sustainability reasons we have hooked up HemeLB with 
the DLR steering client and suspended any further 
development on the HemeLB steering client. 

Table 5.2 Achievements towards remaining tasks from the previous roadmaps for HemeLB 

5.3 Roadmap	
  to	
  exascale	
  
Task Estimated effort Status 

Automated ensemble 
simulation approach 

6 PM (4 invested) Ongoing, preliminary 
results available. 

Stand-alone domain 
decomposition tool 

4 PM (2 invested) Ongoing, preliminary 
results available. 

Port to many-core 
architectures 

18 PM In planning. 

Table 5.3 Roadmap to exascale for HemeLB 

5.3.1 Automated	
  ensemble	
  simulation	
  approach	
  
Arteries are subject to a wide range of flow regimes through a patient's life. Thus 
comprehensive analysis of flow dynamics within a cerebral artery, a prime requirement 
for assessing risks of aneurysm formation and rupture, cannot be performed using a 
single simulation instance. In this task we construct an automated approach to create 
initial conditions, and instantiate an ensemble of HemeLB simulations, with different 
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instances being subject to flow inputs with differing heart rate and blood pressure 
values. This task is important for the exascale for two reasons: (I) Exascale machines 
will be highly expensive to use, and by performing a comprehensive flow analysis of 
cerebral arteries we can more convincingly justify the use of such infrastructures. (II) 
Through the incorporation of a range of likely and realistic flow regimes, the 
computational requirement of HemeLB will increase by at least one order of magnitude. 
We have started on this task during CRESTA, and plan to finalize it in subsequent 
projects. 

5.3.2 Stand-­‐alone	
  domain	
  decomposition	
  tool	
  

 
Figure 5.1 Example visualization of a domain decomposition on a 4.6 million lattice site aneurysm 
geometry, partitioned into 128 fragments. We converted the data with an early version of protopart 
and relied on PPStee directly (no HemeLB run required). 

The lack of a balanced domain decomposition is a major constraint for simulation 
performance in solvers relying on sparse geometries [1]. In addition, we observed in 
HemeLB that the domain decomposition step fails to scale on larger core counts, and 
that we are required to repeat identical domain decomposition steps when running 
multiple instances in an ensemble. In this task we construct a stand-alone domain 
decomposition tool (with protopart as the working name), and aim to perform the 
domain decomposition step outside of HemeLB, improving the scalability of the main 
code. In addition, we can experiment with different decomposition approaches without 
running instances of HemeLB, accelerating our search for optimal partitioning methods. 
We have developed a first version of protopart within CRESTA. In addition, we have a 
funded eCSE project, which will allow us to integrate the library with HemeLB. 

5.3.3 Port	
  to	
  many-­‐core	
  architectures	
  
Porting HemeLB to many-core architectures will be a major undertaking, but given the 
recent trends (e.g., the emergence of the CORAL architecture [2]) it is likely that such a 
port will be essential to complete our preparation to the exascale. We intend to perform 
this comprehensive port as part of upcoming projects. 

5.4 Application	
  performance	
  and	
  scalability	
  
In this subsection, we consider the performance and scalability of HemeLB before and 
after the CRESTA project. 
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5.4.1 Efficient	
  strong	
  scalability,	
  model	
  problem	
  
As model problems we use two different cases, representing two very different types of 
problems. The Huge cylinder test case is simply a large cylinder with 230M lattice sites 
with an aspect ratio (length to height) of about 2:1. 

Our second test case resembles an actual scientific use case better than the first one. 
It is called Arterial bifurcation and it represents a forked artery consisting of 25M lattice 
sites. It has a fluid fraction of around 11%, i.e., it is sparse in terms of lattice sites. The 
results for both test problems, described in lattice site updates per second, are given in 
Table 5.4.  

With the Huge cylinder test case we obtain a perfect parallel speedup in terms of site 
updates per second when doubling the number of cores. For the first two core counts, 
i.e., 12,288 and 24,576, the number of lattice sites per code is about 18,000 or 9000, 
respectively. Further doubling of the input data reduces the number of lattice sites per 
core to about 4500 and gives a parallel speedup of 1.49. The drop in parallel efficiency 
is caused by the rather small local problem size per core as the computation versus 
communication ratio becomes too small to achieve perfect scaling. 

Due to its sparsity, it is much harder to achieve a good parallel speedup for the second 
test case. In Table 5.4 we have given results only for the largest test core count tested, 
where we obtained 43 billion site updates per second with only about 2000 lattice sites 
per core. Due to the sparsity of the domain, the second test case resembles the 
exemplar scientific simulation more than the first one. Thus, when the core counts are 
similar, we can expect the performance of the second test case to give an upper bound 
to the lattice point updates per second for the exemplar scientific test case.  

Domain type Core count Site updates per second 

Huge cylinder 

(~230 million lattice sites) 

12,288 51 billion 

24,576 103 billion 

49,152 153 billion 

Arterial bifurcation, 20 
micrometer voxel size 

(~25 million lattice sites) 

12,288 43 billion 

Table 5.4 HemeLB -performance for a model problem 

5.4.2 Efficient	
  strong	
  scalability,	
  exemplar	
  scientific	
  simulation	
  
As part of Deliverable “D6.4 Exemplar scientific simulations” [7], we have performed 
several runs with a Circle of Willis geometry, consisting of 73 million lattice sites. We 
note that the Circle of Willis geometry is very sparse in terms of lattice sites. Such 
sparsity has two main detrimental effects on performance: firstly, it reduces the 
beneficial caching effects on a CPU. Secondly, the uneven sparsity of the domain 
leads to more load imbalance in the domain decomposition step. Any such load 
imbalance is in turn made worse by the lower computation versus communication ratio 
of a sparse domain. 

Simulation Description of run 

 Nodes Total cores Wall time Site updates 
per second 

Circle of Willis  

Scaling test, 10k time 
steps, no I/O 

32 768 235.0 3.1 billion 
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Circle of Willis 

Scaling test, 10k time 
steps, no I/O 

64 1536 132.0 5.5 billion 

Circle of Willis 

Scaling test,10k time 
steps, no I/O 

128 3072 68.7 10.6 billion 

Circle of Willis 

Scaling test,10k time 
steps, no I/O 

256 6144 37.1 19.7 billion 

Circle of Willis 

Scaling test,10k time 
steps, no I/O 

512 12288 23.2 31.5 billion 

Circle of Willis 

Scaling test,10k time 
steps, no I/O 

1024 24576 25.3 28.9 billion 

Circle of Willis 

Production test, 800k 
time steps, I/O every 
10k time steps 

1024 24576 2270.0 25.7 billion 

Table 5.5 HemeLB - exemplar simulation runs on ARCHER 

5.4.3 Summary	
  of	
  the	
  performance	
  improvements	
  achieved	
  
As testified by the task list in their previous sections, and their current status, we have 
performed a huge range of optimization activities within the CRESTA project. Here we 
summarize the improvements achieved in HemeLB, proceeding first with an overview 
of the performance improvement and next with an overview of the other benefits 
obtained during the CRESTA project.  

 
Figure 5.2 Obtained maximum performance achieved with HemeLB between 2007 and 2014. All 
improvements after 2011 were achieved during the CRESTA project. The sparsity of the data sets is 
roughly indicated by the colour of the circle (very sparse is red, non-sparse cylinder data sets are 
blue), and the core count used by the size of the circle 

Raw	
  Performance	
  Power	
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We show the development of the maximum achieved performance of HemeLB over the 
years in Figure 5.2, as published in papers and technical reports. At the start of the 
CRESTA project, in 2011, we were able to obtain a performance of 9.1 billion site 
updates per second using 12,288 cores. As a result of our collaborations in CRESTA, 
we now have been able to obtain a performance of 153 billion site updates per second 
using 49,152 cores in 2014. This constitutes a performance improvement of a factor 
16.8, whereas Moore's law would predict a performance improvement of approximately 
a factor 2.8 over that period. 

Although the maximum obtained number of site updates per second is a good indicator 
of how HemeLB is able to make more efficient use of high-end computing resources, it 
is only one of two important performance aspects for scientist users in the field. This is 
because in lattice-Boltzmann simulations the number of time steps required to reach 
convergence tends to scale with the size of the system modelled. As such, the number 
of time steps we can take per second of wall-clock time in HemeLB becomes 
increasingly important when we simulate larger problem sizes. In Figure 5.3 we present 
this measure for all the runs that we previously presented in Figure 5.2. We find that 
our efforts within CRESTA have allowed us to simulate larger geometries than ever, 
and that we have managed to increase the rate of simulation to almost 2000 time steps 
per second. We believe these benefits are mainly results from our single-core 
optimizations, our improvements in domain decomposition, and the advent of newer 
and faster architectures such as Intel Ivy Bridge. 

For very large data sets (e.g., the huge cylinder), however, we do observe a lower 
speed of about 600 time steps per second. Indeed, one of the major future challenges 
for HemeLB will be to improve this measure for large problems, allowing us to reach 
convergence for these simulations within reasonable time spans. 

 
Figure 5.3 Obtained maximum number of time steps per second achieved, as a function of the 
problem size in the simulation (measured in number of lattice sites). 

Other	
  benefits	
  to	
  HemeLB	
  
We have obtained a number of other benefits for HemeLB over the course of CRESTA. 
These are listed in what follows. 

More	
  robust	
  domain	
  decomposition	
  routines	
  
In addition to obtaining a better load balance, we are now also able to do domain 
decompositions reliably on larger geometries, due to enhancements in the 
configurations and use of the underlying partioning libraries. This has allowed us, for 
example, to reliably run simulations of a 73M lattice site Circle of Willis geometry. 
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Improved	
  visualization	
  and	
  steering	
  
We have connected HemeLB to the DLR Steering and Visualization client, providing us 
with more robust and sustainable software infrastructure to perform in-situ visualization 
and steering of ongoing HemeLB simulations. 

Improved	
  inter-­‐process	
  intercommunication	
  
Early in the CRESTA project we implemented the coalesced communication software 
pattern [3], allowing us to use sophisticated non-blocking techniques within HemeLB 
and systematically organize the different communication concerns in the code (e.g., 
communication required for simulation, visualization or monitoring). In the last year we 
have also implemented and tested the CRESTA non-blocking collectives in HemeLB, 
achieving comparable performance while simplifying the code base. 

Improved	
  diagnostics	
  
We developed the Property Extraction Framework, which now allows us to 
conveniently extract selected macroscopic quantities from our simulations. This 
enhancement has made HemeLB considerably easier to use for scientific purpose, and 
allows us to work on pre-filtered data sets, reducing the I/O requirements of HemeLB 
simulations. 

Improved	
  code	
  organization,	
  usage	
  and	
  diagnostics	
  
As part of our numerous enhancements to HemeLB, we have incorporated a wide 
range of unit tests and continuous integration tests. In addition, we have created a 
Python-based environment to provide shorthand commands for compiling, configuring 
and executing HemeLB simulations on remote resources. Last, but not least, we have 
hooked up HemeLB with essential diagnostic tools such as Allinea MAP, DDT and the 
MUST checker for MPI correctness (see D3.11 for a comprehensive description of 
those activities [8]). 

More	
  science	
  
Although the direct pursuit of domain-specific research with HemeLB is not a direct 
goal in CRESTA, we argue that it does play an important role in proving that the work 
done in CRESTA has had major benefits for the domain-specific research activities 
with HemeLB, raising its profile in the scientific community. For example, using 
HemeLB, we have been able to publish new advances in high-profile domain journals 
such as J. R. Soc. Interface [4], Physics Review E [5] and Interface Focus [6]. 

 

5.5 Code	
  comparison:	
  HemeLB,	
  JYU-­‐LB,	
  AboLB	
  
5.5.1 Background	
  
The lattice Boltzmann method has emerged as a potential simulation task that can 
scale to exaflops and beyond. In order to explore the level of performance that can be 
reached for this kind of simulation, two new codes, the CPU code JYU-­‐LB and the GPU 
code AboLBM, were developed in CRESTA and compared against HemeLB for strong 
scaling performance. For our comparison three different simulation geometries where 
used. The first case was a square duct or empty box, essentially a sample with only 
fluid and no solid sites and with a volume of 512 cubed. The second was a porous 
media sample representing a sandstone sample with a size of 1024 cubed with a 
porosity of around 13%, obtained from R. Hilfer et al. at the Institute for Computational 
Physics at the university of Stuttgart [11]. The last sample is the Circle of Willis (CW) 
which is the main blood distribution system in the brain. It is a ring-like structure 
connecting the internal carotid arteries with the cerebral arteries via a set of 
communicating arteries. The geometry used was kindly provided by Prof Figueroa at 
KCL [10] and was discretized for simulation with a grid spacing of 3.3e-5 m. 

5.5.2 Test	
  Environment	
  
For the CPU tests ARCHER at EPCC was used. ARCHER is a Cray XC30 machine 
consisting of 4920 compute nodes, each with two 12 core Intel Xeon E5-2697 v2 
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processors connected together with the Cray Aries interconnect for a total of 118 080 
cores with a peak performance of 1.642 PFLOPs.  

For our GPU tests we used Titan at Oak Ridge. Titan is a Cray XK7 machine with 
18688 compute nodes, Each node consists of one AMD Opteron 6274 16 core CPU 
and one Nvidia Kepler K20x GPU giving a total peak performance of 17.590 PFLOPs. 

5.5.3 Codes	
  
We compared two CPU codes and one GPU code with each other. The first CPU code 
is HemeLB, the inner workings of which has been presented earlier, in this case 
HemeLB was run using the D3Q19 stencil with half way bounce back boundary 
conditions For the relaxation model a newly implemented two relaxation time (TRT) 
model was used.  

The second CPU code, referred to as JYU-LB, was developed at University of 
Jyväskylä. It uses the D3Q19 stencil and the TRT collision model. No-slip boundary 
condition is implemented with the common halfway bounce-back scheme. Time 
propagation is realized with the AA-pattern [9] algorithm that uses a fused 
implementation, where the relaxation and propagation steps are executed together for 
each lattice site. JYU-LB is parallelized with hybrid strategy using MPI communication 
over computation nodes and OpenMP inside the nodes. Subdomains designated to 
nodes therefore have close to optimal load balance over threads. However, JYU-LB 
only supports Cartesian decomposition (rectangular subdomains) which greatly 
simplifies the code, but deteriorates load balance between nodes for non-
homogeneous geometries. Using an efficient differential evolution optimization 
algorithm we adjust the positions of the hyperplanes of the Cartesian decomposition 
attempting to equalize the number of fluid cells inside the subdomains. 

The GPU code, referred to as AboLB, was developed at Åbo Akademi University. It is 
similar to the JYU-LB in that it is implemented using the same relaxation operator, 
boundary conditions as well as time propagation algorithm. Instead of using OpenMP 
to parallelize the computational part however it is offloaded to the GPU using CUDA. 
The code also implements asynchronous communication where the CPU will make 
progress on the communication while at the same time the GPU is doing the necessary 
computation for the current time step. AboLB also supports a more general load 
balancing scheme based on rectangular subdomains, and in these comparisons the 
load was distributed using a simple recursive bisection approach. 
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Figure 5.4 Results for the LB comparison between JYU-LB, AboLB and HemeLB.  
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5.5.4 Results	
  
The three different samples were run using the three different solvers, measuring 
strong scaling from 1 to 4096 nodes using the same input data for all codes and 
dividing the computational domain into smaller parts as needed. The flops numbers are 
derived by measuring the number of site updates per second the codes achieve and 
then multiplying the result with the number of floating point operations each site update 
consists of on that architecture.  For the CPU solver the number of floating point 
operations is estimated to be 219 while on the GPU the number of floating point 
operations was measured using a profiler to be 279 operations per site update. The 
strong scaling performance results for the three lattice Boltzmann solvers using the 
three geometries are given in the graphs, measured as GFLOPs/node. Ideally this 
number stays constant.  

5.5.5 Strong	
  Scalability:	
  Conclusions	
  
Both CPU based codes benefit from the faster interconnect offered by the Cray XC30 
machine. Additionally the Aries interconnect on the XC30 machines is also a more 
advanced layout, a dragonfly topology with a fixed worst case number of hops, 
compared to the torus interconnect on Titan where the maximum number of hops 
between two specific nodes varies based on the status of the machine and the job size. 

The JYU-­‐LB shows excellent strong scalability for all geometry cases. It scales from one 
compute node to the maximum number of nodes tested without the per node 
performance dropping below half of the initial per node performance. The slowest 
combination of nodes only drops down to 0.7	
   of	
   the	
   initial	
   performance	
   for the square 
duct, 0.66 for the CW geometry and 0.84	
  for the porous geometry. For the square duct 
and porous geometry cases the code also achieves super linear scaling, providing the 
best performance per node at the largest node count the code was run on.  The super 
linear scaling phenomena occurs when all the data associated with the current 
simulation fits into the L3 cache on the CPUs, in this case the CPUs have 30MB of L3 
cache each for a total of 60MB. 

HemeLB also shows great scalability for the test geometries, only dropping below half 
of the initial per node performance for the square duct case when scaling to 2048 
compute nodes. The slowest per node performance compared to the initial 
performance for the CW case was 0.74, and 0.53 of the initial performance for the 
porous case. 

AboLB, the GPU solver appears to have some scalability issues. For all geometries the 
performance quickly drops to less than half of the initial per node performance: for the 
square duct this occurs when scaling to 512 nodes, for the CW case when scaling to 
only 256 nodes and in the porous case AboLB performed the best but the performance 
per node still fell slightly below half the initial per node performance when scaling up to 
1024 nodes. The code starts scaling poorly when the simulation becomes 
communication bound, for the CW case some nodes start missing their communication 
deadlines at 32 nodes already, at 256 nodes almost all nodes miss all their 
communication deadlines. The Square duct case also start missing all its 
communication deadlines when scaling to 256 nodes while the porous media case fairs 
slightly better due to the lower ratio of data that needs to be communicated compared 
to the total computation per node. The issues are partly due to the network on Titan, 
but another factor to consider is also the fact that the GPU is an added component of 
the system, meaning that any communication needs to make an additional hop over 
the PCI-e bus. Although the added latency from this extra hop is significantly smaller 
than the latency of the node to node communication it still does affect the performance 
somewhat. 	
  

5.5.6 Floating	
  point	
  performance:	
  conclusions	
  
Peak numerical performance for the CPU based codes were achieved at the maximum 
number of nodes they were executed on. For HemeLB peak performance was 
18371.05 GFLOP for the duct case on 2048 nodes, 13158.33 GFLOPS for the porous 
media case on 1024 nodes and 10807.85 GFLOPS for the CW case on 1024 nodes. 
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JYU-LB reached a peak performance of 20876.2 GFLOPS for the duct case on 512 
nodes, 19395.3 GFLOPS for the porous media case on 512 nodes and 2005.58 
GFLOPS on 64 nodes for the CW case. For the AboLB peak performance was reached 
on 2048 nodes for all cases and not the maximum 4096 nodes the samples were 
scaled to. For the GPU the peak performance was 42896.6 GFLOPS for the duct case, 
77228.28 GFLOPS for the porous media case and 15595.9 GFLOPS for the CW case. 

Comparing all solvers at 64 compute nodes and all different geometry samples gives a 
more even comparison. It is clear that from a total floating point performance 
standpoint the AboLB GPU based code is the fastest, all of the additional speed 
however is not just due to the fact that the GPUs offer a better theoretical floating point 
performance but also due to the massive additional bandwidth available on them.  Most 
of the difference between the CPU solvers can be attributed to the AA algorithm used 
by JYU-LB. 

 

 
	
  

Figure 5.5 Total floating point performance for the three LB codes: JYU-LB, AboLB and HemeLB.  

	
  

Both JYU-LB and AboLB have also completed large scale runs using a higher 
resolution version of the porous media sample, 16384 cubed instead of 1024 with the 
same porosity. JYU-LB was run on Archer using 2880 nodes (96% of the Phase 1 
configuration) and was able to reach a performance of 0.078 PFLOPS. AboLB has 
been run on 16384 nodes of Titan using half of the high resolution porous media 
sample, only half the sample was used due to memory constraints with less than 6GB 
available per GPU. Peak floating point performance for this  
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6 IFS	
  
The Integrated Forecasting System (IFS) is the production numerical weather forecast 
application at ECMWF. IFS comprises several component suites, namely, a 10-day 
high-resolution forecast model, a four-dimension variational analysis (4D-Var) for 
producing the initial conditions for the forecast, an ensemble prediction system and an 
ensemble data assimilation system. 
The use of ensemble methods are well matched to today’s HPC systems, as each 
ensemble application (model or data assimilation) is independent and can be sized in 
resolution and by the number of ensemble members to fill any supercomputer. 
However, these ensemble applications are only part of the IFS production suite and the 
high resolution forecast model (referred to as ‘IFS model’ from now on) and 4D-Var 
analysis applications are equally important in providing forecasts to ECMWF member 
states of up to 10 to 15 days ahead. 
For the CRESTA project it has been decided to focus on the IFS model to understand 
its present limitations and to explore approaches to get it to scale well on future 
exascale systems. 

6.1 Summary	
  of	
  the	
  previous	
  roadmaps	
  
Task Scheduled date Status 

Coarray kernel 4Q2011-1Q2012 Completed 

IFS CY37R3 port 1Q2012 Completed 

Legendre transform 
coarray optimization 

2Q-3Q2012 Completed 

Semi-Lagrangian coarray 
optimization 

4Q2012-2Q2013 Completed 

Optimization of Fourier 
latitude load-balancing 
heuristic 

2013 Completed 

Development of a future 
solver for IFS 

2014 CRESTA contribution 
completed (see below) 

Fourier transform coarray 
optimization. 

3Q2012-4Q2012 Completed 

IFS CY38R2 port 1Q2013 Completed 

Radiation in parallel 
scheme (added) 

1Q2013-1Q2014 Completed 

Investigate GPU use in IFS 2Q2013-4Q2013 Completed 

Investigate graph based 
(DAG) parallelization 

2H2013-2014 Completed 

Table 6.1 Summary of the previous roadmaps for IFS 

Coarray	
  kernel	
  
Develop kernel to investigate overlapping computation and communication using 
Fortran2008 coarrays in an OpenMP parallel region. 

IFS	
  CY37R3	
  port	
  
Port of IFS model (CY37R3) to HECToR and analysis of performance for model 
resolutions up to T2047 (10km grid). 

Legendre	
  transform	
  coarray	
  optimization	
  
Optimization of the IFS transform library to overlap the computation of the Legendre 
transforms with the associated communications (TRMTOL/TRLTOM). 
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Semi-­‐Lagrangian	
  coarray	
  optimization	
  
Developments to the IFS semi-Lagrangian scheme to use Fortran2008 coarrays to 
improve scalability by removing the need to perform full halo wide communications. In 
addition, computations in the semi-Lagrangian scheme to determine the departure 
point and mid-point of the trajectory are overlapped with coarray transfers from 
neighbouring tasks. 

Optimization	
  of	
  Fourier	
  latitude	
  load-­‐balancing	
  heuristic	
  
Optimization of the heuristic used to statically load-balance the distribution of variable 
length latitudes in grid-space. An optimal distribution of latitudes is required to load-
balance the cost of performing Fourier transforms as IFS transforms data from grid to 
Fourier space. Work on this task quickly showed that the best static load-balancing 
heuristic at scale was to load-balance the latitude data and ignore the FFT computation 
imbalance. To achieve the perfect data load-balance required a rewrite of the trans 
library routine sumplatb_mod.F90 which was also tested offline to beyond 1M cores 
(assuming 16 threads per task). 

Development	
  of	
  a	
  future	
  solver	
  (alternative	
  dynamical	
  core	
  option)	
  for	
  IFS	
  
Research into a dynamical core for extreme scaling of IFS and a potential replacement 
of the spectral method. This research is primarily being performed at ECMWF within 
the Numerical Aspects section and in particular with Piotr Smolarkiewicz who is a 
recipient of a European Research Council grant (project “PantaRhei”) in the Seventh 
Framework Programme (FP7/2012/ERC Grant agreement no. 320375). Recent 
developments in this section are presented in [1] and [2]. Within CRESTA, supporting 
research has focused on developing a flexible computational environment to provide 
extreme scalability with predominantly nearest neighbor communication. Here, spatial 
discretization employs bespoke unstructured meshes built about the vertices of the 
reduced Gaussian grid employed in IFS as shown in Figure 6.1. Such an arrangement 
allows using a domain decomposition identical to IFS and opens avenues to the future 
high fidelity comparisons with IFS’ solutions of primitive equations. Furthermore, it 
allows for model hybridization where selected elements can be directly exchanged 
between the new dynamical core option and IFS, without interpolation. The 
development operates on flexible dual meshes with an efficient parallel edge based 
data structure and a non-staggered arrangement of flow dependent variables. Tests 
have recently progressed to running selected climate benchmarks of global shallow-
water flows. A good resource describing such benchmarks is contained in [4].  It should 
be noted that the overall development of an alternative dynamical core is estimated to 
take in the order of 10 person years. The CRESTA contribution to this effort is now 
complete in respect of the development of a supporting “Atlas” library providing the 
flexible framework discussed above. A pre-release version of the Atlas library has been 
uploaded to the CRESTA source repository. 

 
Figure 6.1 IFS T63 mesh (nodes are existing T63 grid) and existing EQ_REGIONS partitioning 
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Fourier	
  transform	
  coarray	
  optimization	
  
Optimization to the IFS transform library to overlap the computation of the Fourier 
transforms and Fourier space calculations with the associated communications 
(TRGTOL/TRLTOG). This was omitted from the D6.1.1 schedule. 

IFS	
  CY38R2	
  port	
  
Port IFS model code version CY38R2 to HECToR. This code cycle became available in 
4Q2012 and included support for the TL3999 (5 km) model resolution and fast 
Legendre transform. This code version was packaged as a RAPS13 benchmark and 
included all the IFS Fortran2008 coarray optimizations implemented in the first year of 
the CRESTA project. 

Run TL3999 IFS model (5 km global model):  
This subtask was completed on TITAN in 2Q2014 where a 5km IFS global model 
was run using a Tc1999 cubic grid with half the spectral resolution of the TL3999 
linear grid we had originally proposed, as reported in D6.4. It should be noted that 
Tc1999 and TL3999 have exactly the same number of grid-points. 

Assess coarray optimizations at TL3999:  

This subtask was completed in 2Q2014 as above and reported in D6.4. 

Radiation	
  in	
  Parallel	
  Scheme	
  
A scheme whereby the IFS radiation computations were executed in parallel with the 
rest of the model was implemented and reported in [3]. This work showed that in 
principle it is possible to expose greater parallelism by such an approach, however, 
realizing a performance improvement requires computations that are run at every time-
step and are well balanced with the rest of the model in terms of processor resources. 

Investigate	
  GPU	
  use	
  in	
  IFS	
  
Some initial experience of using GPUs was performed as part of the TITAN INCITE14 
award to the CRESTA project. Originally we planned to explore intercepting the matrix-
matrix multiplies (DGEMMs) that are called in the Legendre transforms and execute 
them on GPUs. What we actually did was to port the whole spectral transform scheme 
used in IFS involving Legendre transforms, Fourier transforms and data transpositions 
used in an IFS time-step, and cycle this for 100 time-steps. While this represented a 
very small fraction of the IFS source it did provide some useful experience with using 
OpenACC and the NVIDIA cuFFT library. Figure 6.2 shows a compute cost 
performance comparison for a Tc1999 spectral transform test running on 140 TITAN 
Nvidia K20X GPUs against 140 Cray XC-30 nodes each with 24 Intel Ivybridge cores. 
In Figure 6.2 the TITAN K20X GPU computation cost excludes the associated data 
transfers between host and GPU for each computation section. These host/GPU 
transfers are included in the K20X GPU MPI communication costs. Table 6.2 shows 
the actual costs shown in Figure 6.2, and includes a simple prediction for a XC-30 
system (with a minimal number of XC-30 cores and using the Aries MPI interconnect) 
with a K20X GPU. The prediction indicates the full cost of the spectral transform test 
could be a little faster with a GPU approach, and about a factor of 2 reduction in power 
cost. This is based on data that a Cray XC30 24 core Ivybridge node uses 2.4 times 
the power of Nvidia K20X GPU. 
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Figure 6.2 Tc1999 5 km model spectral transform test compute cost (140 full nodes, 800 fields) 

 

Tc1999 XC-30 TITAN  
K20X GPU 

XC-30 (Aries) 
+GPU Prediction 

LTINV_CTL 645.2 162.8 162.8 

LTDIR_CTL 638.0 132.0 132.0 

FTDIR_CTL 260.2 192.4 192.4 

FTINV_CTL 276.6 199.8 199.8 

MTOL MPI 547.3 1564.9 547.3 

LTOM MPI 222.8 1633.6 222.8 

LTOG MPI 502.0 975.8 502.0 

GTOL MPI 191.7 998.7 191.7 

HOST2GPU - 376.0 376.0 

GPU2HOST - 285.0 285.0 

Total 3283.8 5860.0 2811.8 

Table 6.2 Tc1999 5 km model spectral transform test performance, in milliseconds (140 full nodes, 
800 fields) 

Investigate	
  graph	
  based	
  (DAG)	
  parallelization	
  
The use of graph based parallelization in IFS has been investigated. For this work a 
small (1100 line) kernel was coded with MPI/OpenMP parallelization, to simulate the 
computations and data dependencies in IFS physics and Fourier transforms. OmpSs 
tasking model [6] was used for the DAG parallelization and we had many good 
exchanges with Prof. Jesus Labarta at the Barcelona Supercomputer Centre. This work 
showed promising results for small numbers of threads per task. As the thread count 
was increased the MPI/OpenMP version was always faster than the MPI/OmpSs 
version.  The slower OmpSs performance was identified to be a consequence of 
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having to restrict MPI communications to one thread per OmpSs process as the 
available MPI implementation was not thread safe. Both two-sided and one-sided MPI 
communications were explored in this work. 

6.2 Achievements	
  towards	
  remaining	
  tasks	
  
There are no remaining tasks. 

6.3 Roadmap	
  to	
  exascale	
  
Task Estimated effort Status 

Alternative dynamical core option 10 PY Ongoing 

Extreme scaling with DAGs 12 PM (pilot) In planning 

DSLs for accelerator/host portability 2 PY (dynamics) In planning 

Scalable post processing and 
product generation 

2 PY In planning 

Improved vectorization 1 PY Ongoing 

Scalable model startup 3 PM Reported 

Scalable grib_api initialization 2-3 PM Reported 

Improved memory scaling  3-6 PM In planning 

Further work on computation 
/communication overlap 

2-3 PM In planning 

Table 6.3 Roadmap to exascale for IFS 

6.3.1 Alternative	
  dynamical	
  core	
  option	
  
As discussed in Section 6.1, the scaling runs for the Tc3999 2.5 km model have shown 
that the communication cost for the spectral transform method in IFS is high. While 
overlapping computation and communication shows promising results, this appears to 
be less effective at scale as the computation scales better than the communication. 
This and the requirement to improve the performance of the IFS dynamics (improved 
conservation of mass) are driving the need to provide an alternative dynamical core 
option.  

6.3.2 Extreme	
  scaling	
  with	
  DAGs	
  
Based on past experience, the current IFS model is expected to scale well up to a point 
where each thread has no less than 100 grid columns. The 2.5 km model has some 80 
million grid columns, which implies an upper limit of scalability at around 800K threads, 
which is about 100 times less than the likely core count of an exascale system.  Rather 
than speculate how an even higher resolution model would perform, we need to 
continue to explore ideas to improve the scalability of IFS at the petascale. Within 
CRESTA we have tested a small IFS kernel to understand how OmpSs tasking model 
can be used to overlap computation and communication. Such an approach is 
attractive for its simplicity, and moreover OmpSs can also be used to expose greater 
parallelism throughout IFS. An example could be to expose the independent matrix-
matrix multiplies (DGEMMs) in each stage of the fast Legendre transform butterfly 
scheme. Another example could be to implement a radiation in parallel (or similar 
processes) scheme, and leave it to the DAG scheduler to execute ‘radiation’ threads in 
parallel with ‘model’ threads. In this approach we are alleviated from the complexity of 
managing separate MPI tasks for such processes and balancing their number with 
model MPI tasks [3]. To take this further we would propose a pilot port of IFS to use 
OmpSs, where the primary aim would be to significantly increase the number of 
threads of execution. Maximizing the number of cores (executing threads) per OmpSs 
process would have the benefit of reducing the effect of static load imbalance and also 
for an IFS model to be more resilient to the effects of system jitter. The use of a thread 
safe MPI or use of GASPI/GPI would allow more than one thread to be doing 
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communication while other threads are performing computation tasks. In the longer 
term we would expect the OmpSs capabilities to be supported by a future OpenMP 
standard 

6.3.3 DSLs	
  for	
  accelerator/host	
  portability	
  
The use of Domain Specific Languages (DSLs) will need to be explored to ease the 
porting effort to future accelerators (GPU/MIC) while continuing to maintain a single 
source version for IFS. Portability is an important requirement for IFS as it is jointly 
developed between ECMWF and Meteo France (where it is called ARPEGE) and 
derivatives of IFS being used in other weather centres. An example of a DSL used by 
MeteoSwiss in their local area COSMO model is described in [5]. 

6.3.4 Scalable	
  post	
  processing	
  and	
  product	
  generation	
  
Post processing is the process by which IFS model fields are gathered and written out 
in parallel to a file system, and subsequently archived to an archive store. Product 
generation takes these model fields and produces products (e.g. global fields or local 
area sections) that are disseminated to the ECMWF member states. At the exascale it 
will be prohibitively expensive to gather globally distributed fields on a regular basis 
(every model hour today), so alternative approaches must be found. A possible 
approach could be for a task to move its data to a shared memory location on its node, 
and leave it for some other non-time-critical processes to gather and post process on 
the fly. Storing raw data at the exascale may not be affordable, and a data reduction 
process may need to be used prior to archiving model fields. 

6.3.5 Improved	
  vectorization	
  
Getting the best performance on the latest processor cores requires loops that 
vectorize. While this is mainly the responsibility of a compiler, sometimes directives are 
required to inform the compiler that particular loops are safe to vectorize. In some 
cases routines may require some refactoring to get the best vector performance. 

6.3.6 Scalable	
  model	
  startup	
  
In the CRESTA project we observed that model startup was scaling poorly, and using 
Vampir it was easy to see the main reason for this. For the 2.5 km model case startup 
took up to 12 minutes at about 200K cores on TITAN. The reason is simply that IFS 
uses a single task for reading the initial data (160GB @ 235 MB/s), and although the 
reader task sends this data (a multi megabyte logical record at a time using MPI non-
blocking sends) to other tasks for decoding in parallel, the bottleneck remains the 
single reader. The proposed solution is to use a number of tasks to read the initial data 
in parallel which requires the originator of this data to do corresponding writes in 
parallel to separate files. The subsequent scatter operations of fields to the required 
task distribution are insignificant in cost, and in particular as this is done only once per 
file type (spectral, surface, upper air) at initialization today. 

6.3.7 Scalable	
  grib_api	
  initialization	
  
GRIB is the World Meteorological Organization standard for encoding meteorological 
data, and as part of the initialization phase of an IFS model we call a setup routine on 
all tasks that expect to use the grib_api interface to encode or decode data, which by 
default is all tasks. The problem with this setup routine is that it read tables (files) that 
are spread over 39 files which in total are less than 1 MByte. Reading such data from a 
single directory from 28K tasks on TITAN took about 10 minutes. A workaround was 
found to reduce the number of tasks that need to perform this initialization to about 1K, 
and further to hide this in the dead time that tasks are waiting for the initial data reads 
to complete. Of course, the correct solution should be for a single task to read the data 
and broadcast it to all tasks, taking under a second. This should all be hidden within the 
grib_api interface setup. 

6.3.8 Improved	
  memory	
  scaling	
  
As we double the number of tasks, we would expect our memory use to halve, which is 
not the case for an IFS model. This needs to be addressed, and to be revisited every 
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time a new code cycle of IFS is produced. It would be interesting to see if Allinea 
DDT/MAP can shed some light on this memory scaling issue, but we already have 
some suspects. One such code area is the semi-Lagrangian scheme where a non-
scaling data structure is the wide halo area surrounding the grid points that a task 
owns. The issue with this data structure it is that it is the leading dimension (with fields 
as the second dimension). Transposing these dimensions will not reduce the virtual 
space, but should reduce the number of real pages used particularly when only a small 
part of the wide halo is actually used (as is the case with the CRESTA SL optimization). 
The downside of the transpose is that all the interpolation routines would need to be 
substantially modified and not just swapping the dimensions of some array 
declarations. 

6.3.9 Further	
  work	
  on	
  computation/communication	
  overlap	
  
The current coarray support in Fortran2008 lacks the capability to allocate and 
deallocate coarrays for a subset of images. The next Fortran standard is expected to 
rectify this deficiency by providing support for a coarray team. With this capability, a 
coarray team can be created and a coarray can be allocated within this team, allowing 
greater flexibility, and avoiding the overhead and necessary synchronisation of global 
coarray operations that exist today. The same functionality already exists with 
GASPI/GPI, which can be used to provide a more portable language independent 
approach for computation/communication overlap. 

6.4 Application	
  performance	
  and	
  scalability	
  
For an IFS model, it is critical that in operations it can run a 10 day forecast in under 
one hour, which equates to 240 forecast days per day. During the CRESTA project 
ECMWF have focused on the performance of IFS model resolutions that it would 
expect to be running based on past experience, a halving of model resolution every 8 
years. A 10 km global model is currently planned to enter operations in 2015 on the 
newly installed Cray computers at ECMWF, two XC-30 systems each with 85,000 Intel 
Ivybridge cores. This would suggest the next IFS model resolution upgrade would be to 
a 5 km model in 2023-24 and thereafter to a 2.5 km model in the early 2030’s. It is 
possible that by the early 2030’s ECMWF would have an Exascale system if the 
projected growth of “Top500” systems continues on its near Moore’s law trajectory (this 
is a big assumption). Having access to HECToR in 2011/12 and TITAN in 2013/14 has 
allowed ECMWF to run the 10 km, 5 km and 2.5 km IFS models at scale for short 3 or 
6 forecast hour periods, and measure performance as shown below. 

6.4.1 IFS	
  10	
  km	
  global	
  model	
  
Figure 6.3 shows how scaling has improved over the CRESTA project for the 10 km 
IFS global model. The final OCT-14 scaling improvement was obtained by simply 
reducing the frequency of producing global grid point and spectral norms. These norms 
have no effect on model results and are only useful to ECMWF scientists during model 
development. While these norms are coded using an efficient 2D parallelization 
scheme, these runs are a clear indicator that their use has a negative effect at scale. 
Figure 6.4 shows the performance gains that are due to the coarray optimizations. As 
the operational requirement is 240 forecast days per day, it can be seen that there is 
no scaling issue at the core count (8K cores) to achieve this performance, and the 
improvement due to the coarray optimizations is about 8 percent (on TITAN). 
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Figure 6.3 10 km / L137 global IFS forecast model performance, RAPS12 (CY37R3, on HECToR), 
RAPS13 (CY38R2, on TITAN) 

 

 
Figure 6.4  10 km / L137 global IFS forecast model performance, showing performance 
improvement due to coarray optimizations 
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6.4.2 IFS	
  5	
  km	
  global	
  model	
  
Figure 6.5 shows the performance of a 5 km model running on TITAN and ECMWF’s 
Cray XC-30. It is clear from the detailed timers in IFS that the XC-30 is both faster per 
core (Intel Ivybridge versus AMD Opteron) and has improved communications 
performance over TITAN (Cray Aries versus Cray Gemini interconnect). Yes, the XC-
30 would meet the 240 forecast days per day operational requirement, but the 25K 
cores needed would be too high a fraction of the total 85K cores (on one cluster) to run 
the rest of the operational suite (ensemble prediction system, ensemble data 
assimilation) and other workloads. 

 
Figure 6.5  5 km / L137 global IFS forecast model performance 

The figure also shows the improvement in performance on TITAN at scale by reducing 
the frequency of spectral and global norms (the dashed lines - labelled OCT-14). 

So which of the coarray optimizations had the largest effect on performance? 

Figure 6.6 shows how the performance attributed to the coarray optimizations are 
distributed as a percentage of their total. By far, the most improvement came from the 
semi-Lagrangian optimization at about 50%, then the Legendre optimizations, and 
finally the Fourier optimizations. 
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Figure 6.6 Coarray optimization distribution for Tc1999 on Titan. Left picture: using 49,152 cores, 
Right picture: using 163,840 cores 

6.4.3 IFS	
  2.5	
  km	
  global	
  model	
  
Figure 6.7 shows the performance of a 2.5 km model running on TITAN and ECMWF’s 
Cray XC-30. 

 
Figure 6.7  2.5 km / L137 global IFS forecast model performance 

The latest runs (labeled NOV-14) show a marked improvement in performance at scale 
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except for the final time-step needed for the correctness check. These norms are 
purely diagnostic and have no effect on model results. While these norms are useful 
during the development process, they serve no purpose for operational runs. 
Unfortunately, the NOV-14 model runs at 229K cores both encountered a huge-page 
problem on TITAN, which has been reported to support staff at ORNL. It is suspected 
that this related to memory fragmentation and reduced huge-pages on some nodes. 
Note that none of these runs are getting close to the desired 240 forecast days per day. 
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6.4.4 Efficient	
  weak	
  scalability,	
  IFS	
  10	
  km	
  global	
  model	
  
Figure 6.8 shows the weak scaling of an IFS model on a Cray XC-30 system. The data 
point labeled 240 is for a 10 km model (144 nodes), 218 a 5 km model (821 nodes) and 
177 a 2.5 km model (7122 nodes). As the ECMWF Cray XC-30 system has a 
maximum of 3500 nodes, the 2.5 km performance at 7122 nodes was extrapolated. 
The number of nodes used for the 3 model cases was simply scaled by the number of 
model grid-points and the time-step used, and does not include any non-linear factors 
in the spectral transform method or the radiation grid used. 

 

 
Figure 6.8  Weak scaling of IFS model on a Cray XC-30 

 

It is clear from the weak scaling that an IFS model requires continued scalability 
improvements to get closer to the ideal weak scaling of a horizontal line. 

6.4.5 Summary	
  of	
  the	
  performance	
  improvements	
  achieved	
  
Table 6.4 shows the performance improvements realized in the CRESTA project for a 
10 km global 137 level hydrostatic IFS model case using 45,056 cores on HECToR and 
TITAN (both use AMD Interlagos cores). The performance measure is Forecast Days 
per Day (FD/D), where the operational requirement for a 10 day deterministic forecast 
is one hour or 240 FD/D. This model case is expected to enter operations at ECMWF 
in 3Q2015. 
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Compiler 
Release/System 

10 km model 
FD/D 

Relative 
Performance 

RAPS12 (CY37R3) base, 
linear grid, TSTEP=450s 

8.0.3 

HECToR 
277 1.00 

MPI optimizations to 
wave model 

8.0.3 

HECToR 
356 1.29 

new compiler release, 
improved compiler opts 

8.0.6 

HECToR 
419 1.51 

All coarray optimizations 
(LT, FT, SL) 

8.0.6 

HECToR 
485 1.75 
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RAPS13  (CY38R2) base 
8.1.5 

TITAN 
500 est. 1.80 est. 

Using cubic grid (still 
10km global grid), 
TSTEP=600s 

8.2.2 

TITAN 
880 est. 3.17 est. 

Final runs OCT-14 with 
reduced norms 

8.3.0 

TITAN 
925 3.34 

Table 6.4  Evolution of IFS 10 km L137 model performance using 45,056 cores on HECToR and 
TITAN 

It is clear that IFS model scalability has improved substantially during the CRESTA 
project, and has shown encouraging scalability at the petascale. However, getting an 
IFS model to perform well at the exascale will require many further developments as 
outlined in the roadmap in section 6.3. What is clearly also required is ongoing 
hardware developments to keep power costs to acceptable levels and a software stack 
that provides for performance, portability and maintainability of large applications such 
as IFS. 
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7 Nek5000	
  
Nek5000 [7] is an open-source code for the simulation of incompressible flow in 
complex geometries. The discretization is based on the spectral-element method 
(SEM) which combines the higher-order accuracy from spectral methods with the 
geometric flexibility of finite element methods. 

Nek5000 is written in mixed Fortran77/C and designed to employ fully large-scale 
parallelism. The code has a long history of HPC development.  Recently the large-
scale simulations were successful performed on the Cray XE6 system at PDC, KTH 
with 32,768 cores [8] and on the IBM BG/P Eugene with 262144 cores [9]. An overview 
of the capabilities and recent developments within the Nek5000 community is given in 
[10]. 

7.1 Summary	
  of	
  the	
  previous	
  roadmaps	
  
Task Scheduled date Status 

Investigate existing code 
architecture 

M18 Completed 

Implement error estimator 
and initial refinement code 

M24 Completed 

Adaptive refinement 
development 

M18 Ongoing 

Implement load balancing 
using existing Nek5000 
tool suite 

M30 Ongoing 

Undertake test and 
development on large 
scale applications 

M30 Completed 

OpenACC acceleration of 
Nek5000 

M27 Completed 

Table 7.1 Summary of the previous roadmaps for Nek5000 

Investigate	
  existing	
  code	
  architecture	
  
The aim of this task is to gain a fundamental understanding of most aspects of the 
implementation of NEK5000 with a special attention to the large-scale simulation of 
incompressible flow. 

Implement	
  error	
  estimator	
  and	
  initial	
  refinement	
  code	
  
Adaptive Mesh Refinement (AMR) requires identification of the regions in the flow with 
significant error. Error estimators based on the expansion of the solution in the basis of 
Legendre functions were successfully implemented in NEK5000. 

Adaptive	
  refinement	
  development	
  
AMR gives possibility to increase the accuracy of numerical simulations with minimal 
computational cost. There are two ways of introducing AMR: adaptive p-refinement, i.e. 
increasing polynomial order in individual elements, and adaptive h-refinement, i.e. 
splitting the element into smaller one. We have discarded p-refinement in favor of h-
refinement, due to its flexibility. To manage variable grid structure we used p4est [1] 
library. We have integrated NEK5000 with p4est library adding all the tools necessary 
for mesh regeneration and redistribution.  

Implement	
  load	
  balancing	
  using	
  existing	
  Nek5000	
  tool	
  suite	
  
NEK5000 obtains full scaling using static load balancing based on initial element 
distribution. After introducing AMR the load balancing become an important issue, as 
the grid structure changes during the simulation. We implemented dynamical grid 
partitioning using the ParMetis [2] library. 
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Undertake	
  test	
  and	
  development	
  on	
  large	
  scale	
  applications	
  
By using the developed software environments we conducted large-scale model 
simulations of the heat transfer problem. 

OpenACC	
  acceleration	
  of	
  Nek5000	
  
The objective of this task was to enable the use of Nek5000 on a massively parallel 
hybrid GPU/CPU system. To this end, we first implemented an OpenACC version 
NekBone benchmark, which is a simplified version of Nek5000. The knowledge gained 
from the Nekbone implementation was used to perform the OpenACC acceleration of 
the full Nek5000 code. In addition, the task was used to assess the viability of hybrid 
exascale simulations and the status and the performance of the current OpenACC 
compilers. 

7.2 Achievements	
  towards	
  remaining	
  tasks	
  
Task Achievement 

Adaptive refinement 
development 

Adaptation of the pressure preconditioners for AMR 

Table 7.2 Achievements towards remaining tasks from the previous roadmaps for Nek5000 

Adaptive	
  refinement	
  development	
  
We have implemented h-type refinement into NEK5000 using p4est library as grid 
manager. It allows us to solve diffusion equation with time independent velocity field on 
the dynamically changing grid using adopted for AMR conjugated gradient method. 
However, integration of full incompressible Navier-Stokes solver in Nek5000 with AMR 
requires significant modification of the pressure solver which is the most 
communication extensive part of the code. To assure fluid incompressibility standard 
methods like conjugated gradient method would require number of iteration 
proportional to the grid point number to converge. This limits their usage to the 
relatively small problems only. To reduce the number of iterations required, specialized 
preconditioners are needed. However, their adaptation to AMR requires additional 
algorithm development, which we will not be able to finish within CRESTA. 

7.3 Roadmap	
  to	
  exascale	
  
Task Estimated effort Status 

Correcting load balancing 
using existing Nek5000 
tool suite 

3 PM Ongoing 

Improving multi-GPU 
communication with 
OpenACC 

6 PM In planning 

Table 7.3 Roadmap to exascale for Nek5000 

7.3.1 Correcting	
  load	
  balancing	
  using	
  existing	
  Nek5000	
  tool	
  suite.	
  
NEK5000 obtains full scaling using static load balancing based on initial element 
distribution. After introducing AMR the dynamic load balancing become an important 
issue, as the grid structure changes during the simulation. In cooperation with WP5 we 
implemented dynamic grid partitioner using standard libraries for graph bisection 
adopting partitioning from scratch strategy. This strategy allows for highest possible 
quality of the mesh distribution, but does not take into account partitioning and 
communication costs. Our tests performed with ParMetis show the partitioning time to 
grow quickly with number of processors and to be dominant in the runs with less than 
10 elements per core. That is why we investigate possible improvements testing 
different repartitioning strategies. This work is performed in cooperation with WP5. 

7.3.2 Improving	
  multi-­‐GPU	
  communication	
  with	
  OpenACC	
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With a multi-GPU setup, the gather-scatter operator and the associated MPI 
communication can be improved.  In the CRESTA project, the original gather-scatter 
operator was split into two parts. First a local gather on the GPU is performed, followed 
by the transfer of the boundary values at the interfaces of the domain. Then the 
boundary values need to be copied to a local CPU memory, communicated via network 
to the memory of another CPU, and then transferred back a memory of a remote GPU 
to finally carry out a local scatter on the GPU. This approach allows a considerable 
reduction in the amount of data to be moved from the GPU and CPU memory and vice 
versa. 

In spite of the reduction in the amount of data transferred, the additional transfers 
between the host and accelerator have an effect on the achievable performance. We 
estimate that techniques such as overlapping of GPU kernels with host/accelerator 
memory transfers or using direct communication between accelerators via RDMA 
would increase the performance of the OpenACC version of Nek5000. This is will be 
part of future research. 

7.4 Application	
  performance	
  and	
  scalability	
  
The original (conformal meshes; no accelerator support) version of Nek5000 scales up 
to 106 processes with parallel efficiency 0.6 on ALCF BG/Q Mira (see Figure 7.1). This 
good scaling is achieved by proper construction of the global communication and code 
simplicity.  

 
Figure 7.1 Strong scaling of original Nek5000 

There are two main tasks related to Nek5000 development in CRESTA: code 
adaptation for GPGPU accelerators with OpenACC and the implementation of h-type 
Adaptive Mesh Refinement (AMR). Both of these tasks require significant modification 
of the global communication pattern that may have a negative impact on the strong 
scaling of the code.  

To check the effect of the modifications, we test the modified code on different model 
problems and run exemplar scientific simulations for GPGPU and AMR scalability 
tests. 
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7.4.1 GPGPU:	
  evaluation	
  of	
  application	
  performance	
  and	
  scalability	
  
The Titan supercomputer has been used to study the performance of OpenACC 
accelerated Nek5000  on GPU systems. Titan is a Cray XK7 supercomputer, 
containing 18,688 AMD Opteron 6274 16-core CPUs and 18,688 Nvidia Tesla K20X 
GPUs. 

GPGPU:	
  Model	
  problem	
  
NekBone is configured with the basic structure and user interface of the extensive 
Nek5000 software. NekBone exposes the principal computational kernel to reveal the 
essential elements of the algorithmic-architectural coupling that is pertinent to 
Nek5000, (More information about NekBone can be found in [11]. 

 

 
Figure 7.2 The performance of NekBone on a single GPU varying the number of elements (E) and 
the order of the polynomial (N). By varying these two parameters the changed computational 
workload on the GPU is changed with which affects the computational performance. 

Consequently, the results from investigating the performance and profiling for NekBone 
can be directly applied to Nek5000. NekBone solves a standard Poisson equation 
using the spectral element method with an iterative conjugate gradient solver. The 
computational performance critically depends on the computation workload on the 
GPU. The larger the number calculations that are completed on the GPU, the higher 
the performance is. This is clear from Figure 7.2 which shows the performance of 
NekBone on a single GPU varying the number of elements (E) and the spectral order 
(N). By increasing these two values, we increase the trip-count of the four nested loops 
in the matrix-matrix multiplications. Better performance is achieved with a high number 
of elements and a high order polynomial.  

Different compilers and versions also affect the performance of NekBone. Figure 7.3 
shows the performance in Gflops on a single GPU with the Cray CCE OpenACC, PGI 
OpenACC and PGI CUDA Fortran compilers, respectively. The best performance (of 
around 75 Gflops) was obtained with the latest version of PGI V14.10.0. The number of 
elements used in these test was 1024. 
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Figure 7.3 The performance of NekBone on a single GPU with different compilers. 1024 elements 
were used. Cray CCE: Cray CCE v8.4.0 compiler; PGI: PGI v14.9.0 compiler; PGI_CUDA: PGI v14.9.0 
with CUDA Fortran. 

GPGPU:	
  Exemplar	
  scientific	
  simulation	
  
The study of turbulent pipe flows is closely related to finding the relationship between 
the average flow velocities and the friction coefficient. The flow of fluid in pipes with 
circular cross-section is frequently encountered in a variety of environmental, technical 
and even biological applications. Typical examples of pipe flows can be found in urban 
drainage systems, the transport of natural gas or oil in the energy sector (i.e. pipelines) 
or the flow of blood in veins and arteries. Simulations can help us to find methods to 
solve problems related to pipe flow, such as drag reduction. Thus, the understanding of 
flow physics in pipes has a direct and significant substantial impact on everyday life [6].  

 
Figure 7.4 Mesh geometry (left) and the instantaneous axial vorticity, displayed for Re=190000 
(right) 

In Nek5000, Direct numerical simulation (DNS) is employed to numerically solve the 
Navier-Stokes equations. In order to capture all the features of an eddy in the flow field, 
the computational domain should be larger than the structures in the flow to resolve the 
smallest scale in the turbulent eddies. Consequently, the computational cost of 
performing a DNS including all scales grows by Re3, where Re is the Reynolds 
number. The highest Reynolds numbers for a pipe flow can reach 5.3x105.  With such a 
high computational costs, only a substantial increase in the available computing power 
makes it possible to fully resolve numerical solutions of a truly turbulent flow. 
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Figure 7.5 The execution time per iteration with different orders of polynomial using the CG linear 
solver and Schwarz preconditioner. 1024 elements were used on a single GPU. OpenACC: single 
GPU; MPI: single node with 16 cores. 

A Nek5000 simulation of the flow in a straight pipe with 400 elements was used to test 
the performance of the Nek5000 code with OpenACC acceleration. The execution time 
per iteration with different orders of polynomial using the CG linear solver and Schwarz 
preconditioner are compared in Figure 7.5. The speed-up achieved using OpenACC 
directives is 1.74 with a16th order polynomial on a single GPU compared to single 
node with 16 CPU cores. 

7.4.2 AMR:	
  evaluation	
  of	
  application	
  performance	
  and	
  scalability	
  
All test runs on AMR were performed on a Cray XE6 system Lindgren at KTH. Lindgren 
computer has a total of 1516 nodes with dual AMD Opteron 12-core 2.1 GHz “Magny-
Cours”  processors (36384 cores in total).  

AMR:	
  Model	
  problem	
  
Our model problem is based on the convected-cone example introduced by Gottlieb 
and Orszag [3], which is the passive scalar transport problem. In the original problem a 
unit-height cone with a base-radius of 0.1 centered at (x,y)=(0, 0.25) is subjected to 
plane rotation according to time independent velocity field v=(y-0.5,0.5-x). We adopted 
this example to 3-dimensional simulations evolving a sphere-shape (strong scaling) or 
cylinder-shape (weak scaling) cone according to energy equation in Nek5000. Spectral 
error estimator identifies discontinuities in the initial condition increasing grid resolution 
at the edge and the center of the cone (see Figure 7.6).  
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Figure 7.6 Two–dimensional cut through the domain of the convected-cone problem showing the 
grid structure (black squares) and the passive scalar profile (color scale). Each element (3D cube 
depicted by a square) corresponds to the mesh of 12X12X12 grid points. 

In our runs we used 6 and 5 refinement levels for strong (sphere) and weak (cylinder) 
scaling tests, respectively. It corresponds to 33864 elements for strong scaling tests 
and 117192 elements for weak scaling test at 2048 cores. Scaling tests were 
performed for number of cores being power of 2 ranging from 2048 up to 32768. The 
global element number in the weak scaling tests ranges from 117192 up to 1875072. In 
all the runs the polynomial order was set to 11 and the graph bisection was performed 
by ParMetis. Note that the global number of elements in some of the strong scaling 
tests is not constant for different processor numbers due to the fact, that p4est 
performs de-refinement of the 8 children elements into the single parent element only if 
all the children elements reside on a single process. That is why the global number of 
elements slowly grows with the number of processors and the run performed on 32768 
cores has in average about 6% elements more than the run performed on 2048 cores. 

In all the tests performed we follow the advected features in the flow (the cone). This 
requires continuous adjustment of the mesh and does not converge to any time 
independent grid structure. Such a strategy is not applicable to stability calculations, 
where instead of individual flow structures the sensitive regions in the flow have to be 
identified and resolved. On the other hand, following the advected features of the flow 
allows us to increase the frequency of grid modification and to study possible 
limitations of the method. In presented runs with grid adaptation turned on the mesh 
was regenerated every 50 Nek5000 steps. 

In all tests we study performance of different tools used in simulations focusing on two 
major stages: non-conformal Nek5000 calculation (SOLVER) and mesh adaptation 
phase (AMR). AMR phase consists of number of operations like identification of 
regions for refinement/de-refinement (ESTIMATOR), generation of the new grid 
performed by p4est (P4EST), mesh partitioning performed by ParMetis (PARTITION), 
sorting and transferring elements between processors (TRANSFER) and resetting 
Nek5000 solver on the new mesh (RESTART). The last operation consists of e.g. 
generation of new global communicators for direct stiffness summations, which require 
global ordering of the grid points done by p4est. Many of these operations are 
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communication extensive and do not perform enough calculations to overlap 
communication. We will discuss performance all those operations in following sections. 

AMR:	
  Exemplar	
  scientific	
  simulation	
  
We do not present here any of the scientific simulations due to the lack of proper, 
adopted for AMR pressure preconditioner, which limits the size of studied problem and 
does not allow to perform scaling tests. It is related to the fact that integration of full 
incompressible Navier-Stokes solver in Nek5000 with AMR requires significant 
modification of the pressure solver, which is the most communication extensive part of 
the code. To assure fluid incompressibility, standard methods such as conjugate 
gradient method would require the number of iterations proportional to the grid point 
number in order to converge. This limits their usage to relatively small problems only. 
To reduce CG iterations, specialized preconditioners are being used. However, their 
adaptation to the AMR framework requires additional algorithm development, which we 
will are unable to finish within CRESTA. 

7.4.3 Efficient	
  strong	
  scalability,	
  model	
  problem	
  

GPGPU:	
  Model	
  problem	
  
For the test on Titan, 16th-order polynomials were used for a total of 8.59 ∙ 10! points. 

 
Figure 7.7 The strong scalability of NekBone. Total  2,097,152 elements and 16th order of 
polynomial are used. 

Figure 7.7 shows the NekBone strong scaling performance, measured in Tflops, with 
up to 16,384 GPUs as a solid red color, while the black dashed line represents the 
ideal strong scaling. The parallel efficiency with 4096 GPUs was 91.9% compared 
when using 1024 GPUs. However the efficiency reduced significantly when going from 
using 4096 to 16,384 GPUs. In order to get better performance we should use as many 
elements per node as we can fit into GPU memory (6GB for the Kepler K20X card). 

AMR:	
  Model	
  problem	
  
The starting point of our discussion is performance test of the non-conformal version of 
Nek5000 (SOLVER) developed within CRESTA without taking into account mesh 
adaptivity. The major differences between non-conformal and conformal (original one) 
Nek5000 versions are the direct stiffness summation operator (related to global 
communication), which is more complicated for the non-conformal version, and the 
initial mesh partitioning, which in non-conformal case is performed by ParMetis. In the 
conformal version grid partitioning is performed by Nek5000 native software and the 
element imbalance cannot exceed 1. On the other hand element imbalance in ParMetis 
is controlled by the imbalance tolerance parameter ε, which value closer to 1.0 should 
give better balancing of the partitions.  
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Figure 7.8 Strong scaling of non-conformal Nek5000 without mesh adaptivity for the imbalance 
tolerance ε equal 1.05 and 1.01. Blue line gives ideal scaling. 

 
Figure 7.9 Elements imbalance as a function of processor number for the imbalance tolerance ε 
equal 1.05 and 1.01. 

To check performance of the non-conformal Nek5000 version we executed number of 
simulations with constant, non-conformal grid structure (grid adaptivity turned off) and 
varying ε. In this case the mesh is generated and redistributed only once during 
initialization phase. The recommended value of ε is 1.05 and we did number of runs 
with ε equal 1.05, 1.01 and 1.001 founding no difference between results of ε=1.01 and 
ε=1.001 simulations.  
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The average time per time step and the element imbalance in the simulations is 
presented in Figure 7.8 and Figure 7.9. Unlike the native Nek5000 grid partitioner, 
ParMetis can give significant element imbalance, which for some cases is comparable 
with or even bigger than the minimum number of elements per core. For example in the 
case of the number of processors NP=16384 and ε=1.01 the element imbalance is 
equal 22 and number of elements per core ranges from 12 up to 34. This has strong 
impact on the code scalability reducing parallel efficiency as can be seen in Figure 7.8. 
Note that the lower value of ε does not always guarantee more balanced partitions. The 
lowest element imbalance was achieved for NP=32768 independently on value of ε 
giving parallel efficiency equal 0.55. This parallel efficiency was reached for about 
15000 grid points per processor (corresponding to about 10 elements) setting minimal 
amount of work necessary for reasonable scaling. 

Next investigated quantity is the time necessary to perform grid partitioning presented 
in Figure 7.11. Most of this time is spent in ParMetis and is dependent on the strong 
scalability of this library. Figure 7.10 shows slow increase of the partitioning time with 
the number of processors NP for NP≤16384 and next rapid jump (about 40 times) for 
NP=32768. As the number of partitions grows with the number of processors, the slow 
increase of the partitioning time is expected, however we are unable to explain the size 
of the jump for biggest NP. It is certainly related to decreasing number of graph nodes 
per core with growing NP and sets minimal amount of elements per core for ParMetis 
to achieve reasonable scaling. In our case this limit is about 20 elements per core, 
which is higher than the limit for the solver itself and shows Nek5000 solver to scale 
better than ParMetis library for studied problems.  

 
Figure 7.10 Partitioning time as a function of processors number. 

Limited scalability of ParMetis is even more prominent in the tests with mesh adaptivity 
turned on, as the mesh partitioning is performed frequently. It is clearly visible in Figure 
7.11 presenting the percentage of time spent in Nek5000 solver (SOLVER) and grid 
adaptation stage (AMR), and in Figure 7.12 showing average time per timestep 
including both SOLVER and AMR stages. The percentage of time spent in AMR stage 
is constantly growing with growing CPU number and for NP=32768 reaches about 90% 
causing significant increase of the average time per timestep.  
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Figure 7.11 Percentage of runtime spent in fluid evolution stage (SOLVER) and mesh adaptation 
(AMR). 

 
Figure 7.12 Strong scaling of non-conformal Nek5000 with mesh adaptivity for the imbalance 
tolerance ε=1.01. Green line gives ideal scaling. 
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Figure 7.13 Percentage of runtime spent in different stages of mesh adaptation phase as a function 
of core number. 

 
Figure 7.14 Execution time (for single mesh adaptivity cycle) of different tools in AMR stage 
compared with average time per timestep of Nek5000 solver. In this plot SOLVER does average 
over the Nek5000 solver stage only and does not include AMR phase. 

More insight into the performance of different tools used in the AMR stage give Figure 
7.13 showing percentage of runtime spent in different stages of mesh adaptation 
phase, and Figure 7.14 presenting the execution time of different AMR tools during 
single mesh adaptivity cycle. They are compared with the average time per timestep of 
non-conformal Nek5000 solver. Unlike in Figure 7.12, this averaging procedure does 
not include AMR phase showing the strong scaling of the solver alone. These plots 
show the error estimator stage (ESTIMATOR) to be negligible, as all the calculations 
are performed locally. More computationally expensive stages are reset of the 
Nek5000 solver on the new mesh (RESTART) and sorting/transferring elements 
between processors (TRANSFER). However, those two phases scale only slightly 
worse than Nek5000 solver (SOLVER). There is some parallel efficiency decrease in 
the case of RESTART at NP=32768 caused by communication intensive global 
numbering of the grid points (performed by p4est) and generation of the new global 
communicator. The most important limitation is here scalability of used libraries: p4est 
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responsible for mesh regeneration (P4EST) and ParMetis responsible for mesh 
partitioning (PARTITION). Both perform communication intensive operations (like grid 
balancing in p4est) and set limit for minimum load, which we estimate to 20 elements 
per core. However, this value can strongly depend on the polynomial order used for the 
spectral element method. 

 
Figure 7.15 Parallel efficiency of the simulations without (ε=1.05; ε=1.01) and with (AMR) grid 
adaptation for non-conformal version of Nek5000. 

We conclude this section with Figure 7.15 presenting parallel efficiency plot of all 
discussed simulations. It shows comparable parallel efficiency of all the runs with the 
number of elements per core bigger than 20, and accents importance of the proper 
balancing of the mesh partitions. 

7.4.4 Efficient	
  weak	
  scalability,	
  model	
  problem	
  

GPGPU:	
  Model	
  problem	
  
For the test on Titan, 1024 elements per node and 16th-order polynomials were used 
for a total of 4,194,304 points per node. Figure 7.16 shows the NekBone weak scaling 
performance, measured in TFlops, with up to 16,384 GPUs in red color, while the black 
dashed line represents the ideal weak scaling. The parallel efficiency on 16,384 GPUs 
was 52.8% compared with single GPU and the maximum performance is 609.8 Tflops. 

 
Figure 7.16 Weak scalability results for Nekbone benchmark on the Titan supercomputer with up to 
16,384 GPUs (red line) and ideal case (black dashed line). 
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Comparing the GPU version with the pure CPU version of the NekBone code, a speed-
up of 2.4-4.0 times can be obtained, see Figure 7.17. 

 
Figure 7.17 Weak scalability results for Nekbone benchmark on the Titan supercomputer with up to 
16,384 GPUs compared with full nodes of a pure CPU version. 

AMR:	
  Model	
  problem	
  
Presenting weak scalability test we compare, like in the strong scalability case, 
performance of the non-conformal Nek5000 version without and with grid adaptivity. In 
the first case simulations are performed with a constant, non-conformal grid partitioned 
only once during initialization phase. In the second case grid is recreated every 50 
solver steps. In all executed runs the grid partitioning is performed by ParMetis and the 
imbalance tolerance parameter ε is set to 1.01. Adopted test case gives at least 50 
elements per core, what allows us to avoid discussed in the previous section problems 
with limited strong scalability of ParMetis. 

 
Figure 7.18 Weak scalability of non-conformal Nek5000 without (ε=1.01) and with (AMR) mesh 
adaptivity. In the AMR case the execution time of the grid adaptation phase is included in the 
averaging. 

Figure 7.18 presents the average time per timestep for the simulations with grid 
adaptivity turned off (red symbols) and on (green symbols). The element imbalance in 
both cases is usually smaller than in the strong scalability tests ranging from 4 to 12 
elements, but is considerably bigger than element imbalance achieved by native static 
partitioner of Nek5000. Nek5000 solver itself shows very good parallel performance 

1 1024 2048 4096 8192 16384
0

100

200

300

400

500

600

700

Number of Nodes/GPUs

TF
lo

ps

 

 

3.93x

4.25x

2.95x

2.40x
OpenACC/MPI
MPI



 

© CRESTA Consortium   Page 57 of 73 

 

reaching parallel efficiency of 0.75 for NP=32768 and the global element number equal 
1875072.  

 
Figure 7.19 24 Execution time for a single grid partitioning as a function of processor number for 
simulations without (ε=1.01) and with (AMR) mesh adaptivity. In the AMR case plotted time is an 
average over 80 grid adaptation cycles. 

 
Figure 7.20 Percentage of runtime spent in fluid evolution stage (SOLVER) and mesh adaptation 
(AMR) for the simulation with grid adaptivity. 
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Figure 7.21 Execution time (for single mesh adaptivity cycle) of different tools in AMR stage 
compared with average time per timestep of Nek5000 solver. In this plot SOLVER does average 
over the Nek5000 solver stage only and does not include AMR phase. 

 
Figure 7.22 Percentage of runtime spent in different stages of mesh adaptation phase as a function 
of core number. 

When the grid adaptivity is included, the parallel efficiency drops to 0.57 showing 
considerable communication overhead in mesh regeneration stage. It is related to 
increasing time necessary to perform grid partitioning by ParMetis (see Figure 7.21) 
however even for the biggest simulation the mesh adaptation phase does not take 
more than 30% of the runtime (see Figure 7.20). However, Figure 7.21 and Figure 7.22 
show grid partitioning to be most costly operation for NP≥4096. Like in the strong 
scaling case the error estimator (ESTIMATOR) is insignificant for our performance 
tests. In the similar way we find non-conformal Nek5000 solver to be the most 
efficiently parallelized component of our code, and the sorting/transfer tool 
(TRANSFER) scaling reasonably well. There is visible decrease in parallel 
performance of the Nek5000 restart tool (RESTART) due to communication intensive 
global numbering of the grid points (performed by p4est) and generation of the new 
global communicator. On the other hand the scalability of ParMetis is the most 
important limitation of our implementation requiring some improvements. 
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We conclude this section with Figure 7.23 presenting parallel efficiency plot of all 
discussed simulations. 

 
Figure 7.23 Parallel efficiency of the simulations without (ε=1.01) and with (AMR) grid adaptation 
for non-conformal version of Nek5000. 

7.4.5 Efficient	
  strong	
  scalability,	
  exemplar	
  scientific	
  simulation	
  

GPGPU	
  
From Figure 7.2 we know that the performance of kernels (matrix-matrix multiplication) 
highly depends on the order of polynomial (N) and number of elements (E). Larger 
values of N give better performance. This may be that the amount of work per thread 
(which is proportional to N) is greater, which either leads to better kernel efficiency or 
assists to offset the latency cost of launching kernels. Also the MPI communication 
overlaps the less workload of GPUs. Consequently, the degradation performance with 
increase of the number of GPUs for the strong scalability is expected. The performance 
of OpenACC version is quite different from the original MPI version where parallel 
efficiency 0.6 has been measured for strong scalability between 32768 and 1048576 
MPI ranks, see Figure 7.1.  
A Nek5000 simulation of the flow in a straight pipe with 1.2M elements was used to test the 
performance of the Nek5000 code with OpenACC simulation. The execution time per iteration with 
different orders of polynomial using the GMRES linear solver and Schwarz preconditioner are 
compared in  
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Figure 7.24 and Figure 7.25. The speed-up achieved using OpenACC directives is 1.30 
with a 16th order polynomial on 16,384 GPUs compared to 16,384 nodes with 262144 
CPU cores. However with a 14th order polynomial we cannot obtain better 
performance with OpenACC version. Figure 7.2 shows that the performance for the 
kernels reduces from 61.0 Gflops to 50.5 Gflops with decreasing the number of 
elements from 512 to 128 per GPU using 14th order of polynomial. larger values of N 
give better performance. I am not sure of the reason for this, but it might be that the 
amount of work per thread (which is proportional to N) is greater, which either leads to 
better kernel efficiency or helps to offset the latency cost of launching kernels. 
Simulations with larger values of N will run slower than those with smaller values, but 
larger-N gives better performance.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.24 The strong scalability for Nek5000 using a 14th order polynomial. The total number or 
grid points is 3,468 M. 

 

 
Figure 7.25 The strong scalability for Nek5000 using a 16th order polynomial. The total number of 
grid points is 5177 M. 

 

 

7.4.6 Summary	
  of	
  the	
  performance	
  improvements	
  achieved	
  

GPGPU	
  
Nek5000 code has been fully ported to exploit the processing power of multi-GPU 
systems by using OpenACC compiler directives. The work focused on porting the most 
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time-consuming parts of Nek5000, namely the matrix-matrix multiplication and the 
preconditioned linear solve operation, to GPGPU. The gather-scatter kernel used with 
MPI operations was redesigned in order to decrease the amount of data transferred 
between the host and the accelerator. The speed-up achieved using OpenACC 
directives is 1.30 with a 16th order polynomial on 16,384 GPUs when compared to 
16,384 full CPU nodes having 262,144 CPU cores in total. 

We estimate overlapping of the GPU kernels with host-accelerator memory transfers 
would further increase the performance of the OpenACC version of the Nek5000. Such 
developments will be part of future research. 

AMR	
  
Within CRESTA we implemented in Nek5000 all the tools necessary to dynamically 
modify the mesh structure during the simulation by changing the global number of 
elements through h-refinement. It allows for non-conformal meshes which add more 
flexibility to the grid generation by removing the refinement propagation problem in the 
conformal meshes. Such propagation would lead to unnecessary elements in the far-
field as well as high aspect-ratio elements that are detrimental to the iterative solver 
performance. It also allows for control of the computational error during the simulation 
by using proper error estimator.  

Depending on the adopted error estimator different goals can be achieved, that is, 
proper representation of different flow features by resolving advected structures in the 
flow, or proper treatment of the flow stability properties by resolving sensitive regions in 
the flow. In our numerical experiments, we found the non-conformal version of 
Nek5000 to be the most efficiently parallelized component of our code.  

Currently the biggest constraint in the parallel scalability is set by the performance of 
the grid partitioner, showing partitioning from scratch strategy to be inefficient. Right 
now we are investigating other partitioning strategies. This would unfortunately not 
allow exascale simulations in which advected flow features are followed either, as the 
mesh requires continuous adjustment and does not converge to any time independent 
grid structure. On the other hand, in the stability calculations where the final mesh 
structure can be time independent, the costly AMR with mesh adaptivity can be used 
as preprocessing step. Then the non-conformal Nek5000 solver can be used during the 
main simulation run to have computations at a multi-peta –or exascale. 
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8 OpenFOAM	
  
OpenFOAM® is an open source library for computational multiphysics and especially 
computational fluid dynamics (CFD) problems. The library is a "toolbox" which provides 
a selection of different solvers as well as routines for various kinds of analysis, pre- and 
post-processing. OpenFOAM® is licensed under the GPL. As such, modifications have 
been made to the code by different parties at different times and several versions are in 
common use. In this project, we consider the official release from the OpenFOAM® 
foundation (a not-for profit organization, wholly owned by OpenCFD Ltd.), and the 
release from the OpenFOAM® Extend project.  

8.1 Summary	
  of	
  the	
  previous	
  roadmaps	
  
Task Scheduled date Status 

Benchmarking of the latest 
version of the code 

M36 Completed 

Code analysis of latest 
version of code 

M36 Completed 

Performance analysis of 
kernels, libraries 

M36 Completed 

Test case 02: Pump 
turbine power plant with 
OpenFOAM-2.1 

M18 Completed 

Scientific results for the 
pump turbine flow 
simulation 

M36 Completed 

Iterative performance 
improvement 

M36 Cancelled 

Table 8.1 Summary of the previous roadmaps for OpenFOAM 

Benchmarking	
  of	
  the	
  latest	
  version	
  of	
  the	
  code	
  
Detailed benchmarking of the code proved considerably more difficult than what was 
initially assumed as a number of tools, such as CrayPAT, failed to instrument the 
OpenFOAM binary. Benchmarking was concluded by collaborating with Vampir design 
team and instrumenting parts of the program manually. 

Code	
  analysis	
  of	
  latest	
  version	
  of	
  code	
  
The task has been completed, resulting in an analysis of the structure of OpenFOAM. 
For a detailed analysis see Section 8.2. 

Performance	
  analysis	
  of	
  kernels,	
  libraries	
  
Performance analysis has been concluded on Hornet (Cray XC40) by using the Vampir 
tool with analysis given in Section 8.2. 

Test	
  case	
  02:	
  Pump	
  turbine	
  power	
  plant	
  with	
  OpenFOAM-­‐2.1	
  
The test case was run on Hermit. As the parallel scalability was poor, the focus is on 
the scientific results with version 1.6-ext. 

Scientific	
  results	
  for	
  the	
  pump	
  turbine	
  flow	
  simulation	
  
Turbulence modelling is a key point in the simulation of pump turbines. In certain 
operating conditions strong swirling flows occurs in the draft tube. This leads to strong 
pressure pulsation that in turn might lead to structural damage. The investigation was 
done with version 1.6-ext. 

Iterative	
  performance	
  improvement	
  
When performing the benchmarking and profiling tasks, it became evident that with the 
resources available, OpenFOAM cannot be modified to be an exascale code and this 
task was cancelled. A more detailed analysis is given in Section 8.2. 
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8.2 Roadmap	
  to	
  exascale	
  
OpenFOAM, as it is currently constructed, is not an exascale code, at least for the 
exemplar scientific use cases available within CRESTA. In this section, we give an 
overview of the less than ideal scalability of the code followed by an analysis and 
recommendations for future improvements of the code.  

8.2.1 Efficient	
  strong	
  scalability:	
  model	
  problem	
  	
  

8.2.2 The	
  pipe	
  test	
  case:	
  introduction	
  pipe	
  test	
  case	
  (OpenFOAM-­‐1.6-­‐ext)	
  
As a test case for a flow involving rotating meshes, we use a flow through a pipe. The 
pipe is divided into three cylinders and the cylinder in the middle is set to rotate about 
its axis. Boundaries of the pipes sections are set without any velocity boundary 
conditions and therefore the rotation of the pipe midsection has no effect on the 
properties of the flow. Coupling of meshes is implemented via two GGI interfaces, 
sketched in the Figure 8.1 as the purple and yellow areas of a circle. The advantage of 
this test case is that it uses GGI without the complexity of a whole hydraulic machine. 

The pipe is discretized into 6940350 cells, and its domain is decomposed by the 
OpenFOAM utility “decomposePar” with the “scotch” method enabled. Inlet and outlet 
boundaries are defined at the respective ends of the pipe, and the initial conditions are 
set accordingly. For the numerical solution, the pimple method is used with the rotating 
mesh approach, thus the OpenFOAM solver “pimpleDyMFoam” is chosen. 

8.2.3 Strong	
  scaling	
  results	
  
Figure 8.2 shows the results of a scaling test of the pipe test case on the HPC system 
Hornet at HLRS. One node on Hornet consists of 24 cores, so the range of parallelism 
tested is between one node and 64 nodes, or from 24 cores to 1536 cores. Between 
one node and 16 nodes we can see a nearly ideal speedup, at some points even super 
linear. 

As a rule of thumb, CFD problems using FVM for its solution should be stated with at 
least 50.000 cells per core in order to get a decent speedup. As we can see in Figure 
8.2, OpenFOAM shows good scaling up to 16 nodes, or 384 cores, where we are using 
at about 18.000 cells per core. Therefore, in this test case OpenFOAM shows quite a 
good scaling behaviour for a CFD code. Nevertheless, as the number of cells per core 
would need to be significantly less than this for OpenFOAM to reach exascale. 

Figure 8.1: Pipe test case with two GGI interfaces (OpenFOAM-1.6-ext). 
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Figure 8.2: Scaling test on the pipe test case with about 7 million cells. 

8.2.4 Instrumentation	
  of	
  OpenFOAM-­‐1.6-­‐extend	
  with	
  Vampir	
  
After numerous tries, we finally succeeded in instrumenting OpenFOAM with Vampir 
for tracing experiments. In this section, we would like to give a short overview on how 
the instrumentation process was performed.  

First we set the compiler command environment variable to the Vampir wrapper as 
follows: 
CC  = vtcxx -vt:inst manual -vt:cxx CC -vt:mpi –DVTRACE 

Notice that we are used manual instrumentation user functions as well as 
instrumentation of MPI calls. 

We then compiled OpenFOAM in a standard way, i.e., 
mkdir build 
cd build 
cmake –DCMAKE_INSTALL_DIR=path_to_install_to 
make 

Automatic instrumentation of OpenFOAM was feasible because OpenFOAM uses a lot 
of calls to small templated functions. Normally, these functions would be inlined and the 
overall context optimised by the compiler. This is not the case when using automatic 
instrumentation performed by a tool such as Vampir, since instrumenting function calls 
prevents the compiler from inlining the functions and optimizing their context.  

As an example of instrumentation preventing optimizations, consider the 
implementation of a basic vector operation in the file 
“src/foam/primitives/VectorSpace/VectorSpaceM.H”: 
template<int N, int I> 

class VectorSpaceOps 

{ 
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public: 

    static const int endLoop = (I < N-1) ? 1 : 0; 

    ... 

    template<class V1, class V2, class EqOp> 

    static inline void eqOp(V1& vs1, const V2& vs2, 
EqOp eo) 

    { 

        eo(vs1.v_[I], vs2.v_[I]); 

        VectorSpaceOps<endLoop*N, 
endLoop*(I+1)>::eqOp(vs1, vs2, eo); 

    } 

    ... 

}; 

In the code excerpt, an iterative call to the scalar function “eo” in a vector operation is 
implemented by a recursive call to the member function “eqOp”, which sits in the 
template class “VectorSpaceOps”. The iterations are controlled by a template 
parameter “int I”, which operates as a compile time constant loop iterator. In 
general, such constructs will be inlined by modern optimizing compilers. If every call to 
the member function “eqOp” and the basic operator function “eo” would be 
instrumented, the tracing of these functions would cost more than performing the actual 
scalar operations within the vector operation, strongly distorting the performance 
measurements. 

8.2.5 Tracing	
  of	
  pimpleDyMFoam	
  on	
  pipe	
  test	
  case	
  with	
  Vampir	
  
As an example of using Vampir on OpenFOAM for tracing experiments, consider the 
pimpleDyMFoam solver and a smaller version of the pipe test case in terms of cell 
numbers (866295 cells). We manually instrumented the pimpleDyMFoam for tracing 
every entry in a loop of the solver implementation. Figure 8.3 shows the visual call tree 
output of Vampir. The tracing was conducted with a number of processors with which 
the parallel efficiency was known to have been decreased, i.e., no further speedup 
from increasing the number of processors had been acquired. 

As can be seen from the trace in Figure 8.3, most of the time is being spent in the 
MPI_Allreduce call within the inner-most loop. The MPI_Allreduce in question belongs 
to the dot-product (scalarproduct) of the PCG-solver, which is used in this test case for 
solving the pressure equation. Because the PCG method for solving the pressure 
equation is not a special feature of OpenFOAM, we argue that a review of the applied 
algorithms is needed here to evolve OpenFOAM towards exascale. 
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Figure 8.3: Vampir trace call tree of manually instrumented pimpleDyMFoam on pipe test case. 

8.2.6 Roadmap	
  to	
  exascale:	
  OpenFOAM	
  conclusions	
  
Updating rotating meshes as described in Section 8.2.2 involves changes in the MPI 
communicator, i.e. in the communication pattern used between the computing cores. 
Unfortunately, the typical use case for MPI communicators is that they are set up once 
in the beginning of a simulation and not modified during runtime as modifications 
require a collective operation within the parent communicator. Our measurements 
indicate that the time spent in the mesh update remains nearly constant between 256 
and 1024 cores, i.e., it does not parallelize at all. 

Besides the rotating mesh interface, there are other well-known problems limiting the 
scalability of all CFD codes, not only OpenFOAM. Solving the coupled pressure and 
velocity equations, for example, is generally a problem in simulating incompressible 
fluids. In addition, the widely-used linear solver CG (conjugate gradients) and derived 
solvers require the frequent calculation of global scalar products which act as a global 
barriers (for analysis see the previous subsection). In order to perform exascale 
computations with CFD codes, fundamental research on new mathematical algorithms 
has to be performed. 

A problem specific to OpenFOAM is its complexity. For instance, an attempt to 
implement parallel I/O by using MPI I/O in OpenFOAM failed, since MPI experts within 
CRESTA, could not get the needed insight into the code due to the complexity of the 
codebase and the resource limitations of the project. 

OpenFOAM takes advantage of the possibilities of C++, such as expression templates, 
operator overloading and complex class hierarchies. This is a design decision by the 
developers of OpenFOAM, as their goal has been to create a widely-applicable CFD 
code where the users can easily implement physical models without taking care of 
matrix assembly and linear solver technology. Such features are highly appreciated by 
users, but makes any changes to modify the core structure very time consuming for 
developers who are not familiar with the design. In order to be prepared to exploit the 
computing capabilities of future exascale systems, we strongly recommend 
OpenFOAM, or another CDF code with similar capabilities, undergo disruptive changes 
or a partial rewrite under a close collaboration of a group of experts in HPC, numerics 
and CFD. 



 

© CRESTA Consortium   Page 68 of 73 

 

8.3 Exemplar	
  scientific	
  simulation	
  
Since the parallel scalability of OpenFOAM is not sufficient for exascale, we not focus 
solely the exemplar scientific simulation of OpenFOAM, i.e., pump turbine test case. 
For details and further description of the test case, refer to the CRESTA Deliverable 
D6.4 [6]. 

8.3.1 Choosing	
  an	
  OpenFOAM	
  version:	
  OpenFOAM	
  1.6-­‐ext	
  versus	
  OpenFOAM	
  2.1.1	
  
The pump turbine flow simulation was tested with the newer version of OpenFOAM, 
namely version 2.1.1, where the coupling interface between the (rotating) meshes is 
called AMI (arbitrary mesh interface). As an example case, a mesh with 40 million 
elements was chosen. A speedup test was done between 64 and 1024 cores (see 
Figure 8.4). Beyond 128 cores the performance of version 2.1.1 strongly and rapidly 
decreases. Version 1.6-ext with GGI interface scales quite well up to 1024 cores 
instead. For this reason we further concentrated and used version 1.6-ext for the pump 
turbine application. 

 
Figure 8.4: Parallel Performance of OpenFOAM version 1.6-ext and 2.1.1 for the pump turbine 

simulation  

8.3.2 Scientific	
  results	
  
For a pump turbine flow simulation it is not only sufficient to resolve the large flow 
structures, but also small turbulent scales. As standard RANS models only predict 
large turbulent scales, an eddy resolving method – LES – must be applied. With LES it 
is computationally extreme expensive to resolve the small eddies in the boundary layer. 
For this reason we implemented the IDDES (improved delayed detached eddy 
simulation) [5] type turbulence model based on the RANS-SST model [4]. This model 
uses RANS in the boundary layer and LES in the core flow using some blending 
functions. 

A pure LES would require some billions of elements for the complete pump turbine. 
The problem is that the pump turbine mainly consists of walls: the spiral casing, 20 stay 
and 20 guide vanes, 7 runner blades and the draft tube with extension and bending 
(see Figure 8.5). A rather coarse RANS mesh would require around 10 million 
elements (10M). We investigated this mesh and a refinement with 20 million elements 
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(20M). This mesh is still away from ideal. An ideal mesh would require at least 100 
million elements for the pump turbine. 

 
Figure 8.5: Geometry of the pump turbine used for the flow simulations 

Beneath the large mesh size, quite small time steps of 0.1ms are needed. That means 
around 400 time steps per runner revolution. To get valuable statistics of turbulent data 
50 runner revolutions are necessary, leading to 20000 time steps for the 20M mesh. 
Larger meshes would require smaller time steps to keep the Courant number below 
one in the region of resolved turbulence. 

The simulations were done with OpenFOAM-1.6-ext on Hector XE6 and Hermit XE6 on 
256 cores for the 10M mesh and 512 cores for the 20M mesh. The simulation time for 
the coarse mesh is 90 hours and for the fine mesh 110 hours. 

The results for the pump turbine flow simulation were published at the 10th International 
ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements [2] 
and at the High Performance Computing in Science and Engineering ’14 [3]. 

The axial velocity distribution in a cutting plane in the draft tube is depicted in Figure 
8.6. It is quite obvious that the RANS model only resolves large flow structures and no 
small turbulent scales (left). The IDDES-type turbulence model is resolving small 
turbulence structures (middle and right). 

 
Figure 8.6: Axial velocity distribution in a cutting plane in the draft tube; colour range: -5 to 2 m/s; 

left and middle 10M mesh, right 20M mesh; left RANS-SST model, middle and right IDDES-SST 
model 
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A comparison of the turbulent flow simulation in the draft tube cone with measurements 
from [1] is depicted in Figure 8.7. The RANS simulation significantly overestimates the 
backflow in the core region. With the usage of the hybrid IDDES turbulence model, the 
velocity distribution fits better with the experimental data. 

 
Figure 8.7: Velocity distribution in the draft tube for the axial (left) and the tangential and radial 

component (right) in comparison with measurements 

A consideration of the turbulent content of the flow is done for the turbulent kinetic 
energy (see Figure 8.8). The RANS simulation clearly underestimates the amount of 
turbulent kinetic energy (TKE) in the core flow with and without the modeled content of 
the turbulence model. The content of the modeled TKE is quite small for the IDDES 
simulations. The coarse mesh IDDES simulation shows too high values of TKE in the 
core. The results obtained by the IDDES-SST 20M simulation agree well with the 
measurements instead across the whole diameter. 

 
Figure 8.8: Turbulent kinetic energy distribution in the draft tube in comparison with 

measurements; solid: resolved part, dashed: resolved and modeled part 

 

Due to the strong tangential and axial velocity component for the outer radius, in the 
core a low pressure zone arises, the so called vortex rope phenomenon. The IDDES-
SST model resolves a larger vortex rope (see Figure 8.9), as the RANS model is too 
dissipative. The hybrid model is able to resolve small structures at the end of the vortex 
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rope. The results also show that the finer the mesh for the hybrid model the finer the 
turbulent structures are. At the end of the vortex rope it decays to small turbulent 
structures. 

 

 

 
Figure 8.9: Visualization of the vortex rope phenomenon with iso-surface of pressure; top: 10M 
mesh, left: RANS-SST, right: IDDES-SST, bottom: left: 20M mesh IDDES-SST, right: experiment  

The smaller vortex rope obtained by the RANS-SST simulation leads to a higher 
frequency for the pressure fluctuation compared to experimental results (see Figure 
8.10, left). The coarse mesh IDDES simulation overestimates the pressure amplitude 
and somewhat the frequency. The fine mesh IDDES simulation fits the measurements 
best for the frequency predicting slightly higher pressure amplitude. Generally, the 
higher harmonics of the vortex rope frequency are better represented by the IDDES 
simulations than the RANS simulations. This trend is also visible for the frequency 
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generated by the runner blade wakes (see Figure 8.10, right). Using the RANS 
turbulence model they are not able to be simulated in contrast to using the IDDES 
turbulence model.  

 
Figure 8.10 Pressure pulsations in the draft tube cone for different simulations and experiment 

	
  

Conclusions	
  
The IDDES-type turbulence model was successfully applied to a Francis pump turbine 
flow simulation at turbine part load operating conditions. The validation against 
measurements shows a better representation of the velocity field in the region where 
the vortex rope occurs compared to RANS simulations. The vortex rope phenomenon 
itself can be better resolved using the hybrid turbulence model. The resulting pressure 
fluctuations, validated against measurements as well, show a better resolution of the 
vortex rope induced frequencies, if the mesh resolution is fine enough. Furthermore, 
only the IDDES turbulence model is able to resolve details like pressure pulsation 
generated by the runner blade wakes. The IDDES turbulence model predicts the 
turbulent kinetic energy very well compared to measurements. 

The used mesh sizes are at the lower limit of what has to be used for the hybrid RANS-
LES turbulence model. Resolving the boundary layer and the core flow region requires 
much more elements, namely at least 100 million elements. Despite of the large 
number of elements, this is still far away from a well resolved LES resolution. This 
means that in the future more computational resources are needed. It seems to be 
quite challenging to optimize such a CFD code for this kind of application. 
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