

Copyright © CRESTA Consortium Partners 2014

D6.1.3	
 –	
 Roadmap	
 to	
 exascale	

(update	
 2)	
 	

WP6:	
 Co-­‐design	
 via	
 applications	

Due date: M39

Submission date: 01/12/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization CSC

Version: 1.0

Status Final

Author(s):

Mark Abraham (KTH), Mikko Byckling (CSC), Willem Deconinck
(ECMWF), Derek Groen (UCL), Jing Gong (KTH), Baerbel
Grosse-Woehrmann (HLRS), Mats Hamrud (ECMWF), Timo
Krappel (USTUTT), George Mozdzynski (ECMWF), Adam
Peplinski (KTH), Florian Seybold (HLRS), Jan Åström (CSC), Jan
Westerholm (ABO)

Reviewer(s) Alan Gray (EPCC), Markus Flatken (DLR), Lorna Smith (EPCC)

Dissemination level

<PU/PP/RE/CO> PU

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 29/08/2014 Template of the deliverable Mikko Byckling (CSC),
Jan Åström (CSC)

0.2 26/11/2014 Added introduction and summary Mikko Byckling (CSC)

0.3 26/11/2014 IFS contribution George Mozdzynski
(ECMWF), Mats Hamrud
(ECMWF) , Willem
Deconinck (ECMWF)

0.4 27/11/2014 HemeLB contribution Derek Groen (UCL)

0.5 28/11/2014 OpenFOAM contribution Baerbel Grosse-
Woehrmann (HLRS),
Timo Krappel (USTUTT),
Florian Seybold (HLRS)

0.6 28/11/2014 Nek5000 contribution Jing Gong (KTH), Adam
Peplinski (KTH)

0.7 1/12/2014 Minor corrections Mikko Byckling (CSC)

0.8 2/12/2014 Gromacs contribution Mark Abraham (KTH)

0.9 2/12/2014 Elmfire contribution Jan Westerholm (ABO)

1.0 2/12/2014 First version for internal review Mikko Byckling (CSC)

1.1 9/12/2014 Addressed reviewer comments Mikko Byckling (CSC)

1.2 10/12/2014 Addressed reviewer comments Mikko Byckling (CSC)

1.3 11/12/2014 Addressed reviewer comments Mikko Byckling (CSC)

1.4 17/12/2014 Addressed reviewer comments Mikko Byckling (CSC),
Lorna Smith (EPCC), Jan
Westerholm (ABO)

1.5 17/12/2014 Final version for EC review Mikko Byckling (CSC)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

1.1	
 SUMMARY	
 OF	
 PROGRESS	
 AND	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 1	

1.2	
 SUMMARY	
 OF	
 CO-­‐DESIGN	
 ACTIVITIES	
 ..	
 1	

2	
 INTRODUCTION	
 ...	
 3	

2.1	
 CO-­‐DESIGN	
 PROCESS	
 ...	
 3	

2.1.1	
 Application	
 development	
 and	
 the	
 co-­‐design	
 process	
 ...	
 3	

2.1.2	
 Applications	
 as	
 co-­‐design	
 process	
 vehicles	
 ..	
 4	

2.1.3	
 CRESTA	
 application	
 developer	
 perspective	
 to	
 co-­‐design	
 process	
 ...	
 4	

2.1.4	
 Conclusions	
 on	
 the	
 co-­‐design	
 process	
 ..	
 5	

2.2	
 REFERENCES	
 ..	
 5	

2.3	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 5	

3	
 ELMFIRE	
 ...	
 7	

3.1	
 SUMMARY	
 OF	
 THE	
 PREVIOUS	
 ROADMAPS	
 ...	
 8	

3.2	
 ACHIEVEMENTS	
 TOWARDS	
 REMAINING	
 TASKS	
 ...	
 8	

3.3	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 8	

3.3.1	
 Rewriting	
 memory	
 allocation	
 and	
 structure	
 for	
 Poisson	
 equation	
 ...	
 8	

3.4	
 APPLICATION	
 PERFORMANCE	
 AND	
 SCALABILITY	
 ...	
 9	

3.4.1	
 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	
 ...	
 10	

3.5	
 REFERENCES	
 ..	
 10	

4	
 GROMACS	
 ..	
 11	

4.1	
 SUMMARY	
 OF	
 THE	
 PREVIOUS	
 ROADMAPS	
 ...	
 11	

4.2	
 ACHIEVEMENTS	
 TOWARDS	
 REMAINING	
 TASKS	
 ...	
 12	

4.3	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 13	

4.3.1	
 New	
 decomposition	
 for	
 bonded	
 interactions	
 ...	
 13	

4.3.2	
 Task-­‐based	
 parallelism	
 ...	
 14	

4.3.3	
 Efficient	
 large-­‐scale	
 I/O	
 ..	
 14	

4.3.4	
 Improved	
 domain-­‐decomposition	
 halo	
 exchange	
 ..	
 14	

4.3.5	
 Multi-­‐grid	
 solvers	
 for	
 efficient	
 PME	
 electrostatics	
 ...	
 14	

4.4	
 APPLICATION	
 PERFORMANCE	
 AND	
 SCALABILITY	
 ...	
 15	

4.4.1	
 Efficient	
 strong	
 scalability,	
 model	
 problem	
 ..	
 15	

4.4.2	
 Efficient	
 weak	
 scalability,	
 model	
 problem	
 ..	
 17	

4.4.3	
 Efficient	
 strong	
 scalability,	
 exemplar	
 scientific	
 simulation	
 ...	
 17	

4.4.4	
 Efficient	
 weak	
 scalability,	
 exemplar	
 scientific	
 simulation	
 ..	
 17	

4.4.5	
 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	
 ...	
 17	

4.5	
 REFERENCES	
 ..	
 18	

5	
 HEMELB	
 ...	
 19	

5.1	
 SUMMARY	
 OF	
 THE	
 PREVIOUS	
 ROADMAPS	
 ...	
 19	

5.2	
 ACHIEVEMENTS	
 TOWARDS	
 REMAINING	
 TASKS	
 ...	
 20	

5.3	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 20	

5.3.1	
 Automated	
 ensemble	
 simulation	
 approach	
 ...	
 20	

5.3.2	
 Stand-­‐alone	
 domain	
 decomposition	
 tool	
 ...	
 21	

5.3.3	
 Port	
 to	
 many-­‐core	
 architectures	
 ..	
 21	

5.4	
 APPLICATION	
 PERFORMANCE	
 AND	
 SCALABILITY	
 ...	
 21	

5.4.1	
 Efficient	
 strong	
 scalability,	
 model	
 problem	
 ..	
 22	

5.4.2	
 Efficient	
 strong	
 scalability,	
 exemplar	
 scientific	
 simulation	
 ...	
 22	

5.4.3	
 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	
 ...	
 23	

5.5	
 CODE	
 COMPARISON:	
 HEMELB,	
 JYU-­‐LB,	
 ABOLB	
 ..	
 25	

5.5.1	
 Background	
 ..	
 25	

5.5.2	
 Test	
 Environment	
 ...	
 25	

5.5.3	
 Codes	
 ..	
 26	

5.5.4	
 Results	
 ..	
 28	

5.5.5	
 Strong	
 Scalability:	
 Conclusions	
 ...	
 28	

Copyright © CRESTA Consortium Partners 2014

5.5.6	
 Floating	
 point	
 performance:	
 conclusions	
 ...	
 28	

5.6	
 REFERENCES	
 ..	
 29	

6	
 IFS	
 ...	
 31	

6.1	
 SUMMARY	
 OF	
 THE	
 PREVIOUS	
 ROADMAPS	
 ...	
 31	

6.2	
 ACHIEVEMENTS	
 TOWARDS	
 REMAINING	
 TASKS	
 ...	
 35	

6.3	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 35	

6.3.1	
 Alternative	
 dynamical	
 core	
 option	
 ...	
 35	

6.3.2	
 Extreme	
 scaling	
 with	
 DAGs	
 ..	
 35	

6.3.3	
 DSLs	
 for	
 accelerator/host	
 portability	
 ...	
 36	

6.3.4	
 Scalable	
 post	
 processing	
 and	
 product	
 generation	
 ...	
 36	

6.3.5	
 Improved	
 vectorization	
 ..	
 36	

6.3.6	
 Scalable	
 model	
 startup	
 ...	
 36	

6.3.7	
 Scalable	
 grib_api	
 initialization	
 ...	
 36	

6.3.8	
 Improved	
 memory	
 scaling	
 ..	
 36	

6.3.9	
 Further	
 work	
 on	
 computation/communication	
 overlap	
 ...	
 37	

6.4	
 APPLICATION	
 PERFORMANCE	
 AND	
 SCALABILITY	
 ...	
 37	

6.4.1	
 IFS	
 10	
 km	
 global	
 model	
 ..	
 37	

6.4.2	
 IFS	
 5	
 km	
 global	
 model	
 ..	
 39	

6.4.3	
 IFS	
 2.5	
 km	
 global	
 model	
 ...	
 40	

6.4.4	
 Efficient	
 weak	
 scalability,	
 IFS	
 10	
 km	
 global	
 model	
 ...	
 41	

6.4.5	
 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	
 ...	
 41	

6.5	
 REFERENCES	
 ..	
 42	

7	
 NEK5000	
 ..	
 43	

7.1	
 SUMMARY	
 OF	
 THE	
 PREVIOUS	
 ROADMAPS	
 ...	
 43	

7.2	
 ACHIEVEMENTS	
 TOWARDS	
 REMAINING	
 TASKS	
 ...	
 44	

7.3	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 44	

7.3.1	
 Correcting	
 load	
 balancing	
 using	
 existing	
 Nek5000	
 tool	
 suite.	
 ...	
 44	

7.3.2	
 Improving	
 multi-­‐GPU	
 communication	
 with	
 OpenACC	
 ..	
 44	

7.4	
 APPLICATION	
 PERFORMANCE	
 AND	
 SCALABILITY	
 ...	
 45	

7.4.1	
 GPGPU:	
 evaluation	
 of	
 application	
 performance	
 and	
 scalability	
 ..	
 46	

7.4.2	
 AMR:	
 evaluation	
 of	
 application	
 performance	
 and	
 scalability	
 ..	
 48	

7.4.3	
 Efficient	
 strong	
 scalability,	
 model	
 problem	
 ..	
 50	

7.4.4	
 Efficient	
 weak	
 scalability,	
 model	
 problem	
 ..	
 55	

7.4.5	
 Efficient	
 strong	
 scalability,	
 exemplar	
 scientific	
 simulation	
 ...	
 59	

7.4.6	
 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	
 ...	
 60	

7.5	
 REFERENCES	
 ..	
 61	

8	
 OPENFOAM	
 ...	
 63	

8.1	
 SUMMARY	
 OF	
 THE	
 PREVIOUS	
 ROADMAPS	
 ...	
 63	

8.2	
 ROADMAP	
 TO	
 EXASCALE	
 ...	
 64	

8.2.1	
 Efficient	
 strong	
 scalability:	
 model	
 problem	
 ..	
 64	

8.2.2	
 The	
 pipe	
 test	
 case:	
 introduction	
 pipe	
 test	
 case	
 (OpenFOAM-­‐1.6-­‐ext)	
 	
 64	

8.2.3	
 Strong	
 scaling	
 results	
 ...	
 64	

8.2.4	
 Instrumentation	
 of	
 OpenFOAM-­‐1.6-­‐extend	
 with	
 Vampir	
 ...	
 65	

8.2.5	
 Tracing	
 of	
 pimpleDyMFoam	
 on	
 pipe	
 test	
 case	
 with	
 Vampir	
 ..	
 66	

8.2.6	
 Roadmap	
 to	
 exascale:	
 OpenFOAM	
 conclusions	
 ...	
 67	

8.3	
 EXEMPLAR	
 SCIENTIFIC	
 SIMULATION	
 ..	
 68	

8.3.1	
 Choosing	
 an	
 OpenFOAM	
 version:	
 OpenFOAM	
 1.6-­‐ext	
 versus	
 OpenFOAM	
 2.1.1	
 	
 68	

8.3.2	
 Scientific	
 results	
 ..	
 68	

8.4	
 REFERENCES	
 ..	
 72	

Index	
 of	
 Figures	

Figure 3.1 Elmfire memory scalability per core in a weak scaling test for a model
problem ... 9	

Figure 4.1 Scaling performance of Gromacs 4.5, 4.6 and 5.0 on Sandy Bridge (SNB)
and Haswell (HSW) x86 platforms. Measurements with Gromacs 4.5 and 4.6 were

Copyright © CRESTA Consortium Partners 2014

done on triolith (8-core 2.2GHz Sandy Bridge nodes); measurements with Gromacs 5
were done on a machine with 2 16-core 2.3GHz Haswell processors per node. The
simulation system was a 150K atom ion channel, using PME and 2fs time steps. 15	

Figure 4.2 Scaling performance of Gromacs 5 on BlueGene/Q on three model
simulation systems ... 16	

Figure 4.3 Strong scaling performance of Gromacs 4.6 on nodes with Ivy Bridge CPUs
and two K20 GPUs. .. 16	

Figure 4.4 Gromacs weak scaling performance on BlueGene/Q on a non-linear-scaling
physics model (combined Lennard-Jones+Electrostatic PME on a large box of water) 17	

Figure 5.1 Example visualization of a domain decomposition on a 4.6 million lattice site
aneurysm geometry, partitioned into 128 fragments. We converted the data with an
early version of protopart and relied on PPStee directly (no HemeLB run required). ... 21	

Figure 5.2 Obtained maximum performance achieved with HemeLB between 2007 and
2014. All improvements after 2011 were achieved during the CRESTA project. The
sparsity of the data sets is roughly indicated by the colour of the circle (very sparse is
red, non-sparse cylinder data sets are blue), and the core count used by the size of the
circle ... 23	

Figure 5.3 Obtained maximum number of time steps per second achieved, as a
function of the problem size in the simulation (measured in number of lattice sites). .. 24	

Figure 5.4 Results for the LB comparison between JYU-LB, AboLB and HemeLB. 27	

Figure 5.5 Total floating point performance for the three LB codes: JYU-LB, AboLB and
HemeLB. ... 29	

Figure 6.1 IFS T63 mesh (nodes are existing T63 grid) and existing EQ_REGIONS
partitioning .. 32	

Figure 6.2 Tc1999 5 km model spectral transform test compute cost (140 full nodes,
800 fields) ... 34	

Figure 6.3 10 km / L137 global IFS forecast model performance, RAPS12 (CY37R3, on
HECToR), RAPS13 (CY38R2, on TITAN) .. 38	

Figure 6.4 10 km / L137 global IFS forecast model performance, showing performance
improvement due to coarray optimizations ... 38	

Figure 6.5 5 km / L137 global IFS forecast model performance 39	

Figure 6.6 Coarray optimization distribution for Tc1999 on Titan. Left picture: using
49,152 cores, Right picture: using 163,840 cores .. 40	

Figure 6.7 2.5 km / L137 global IFS forecast model performance 40	

Figure 6.8 Weak scaling of IFS model on a Cray XC-30 ... 41	

Figure 7.1 Strong scaling of original Nek5000 .. 45	

Figure 7.2 The performance of NekBone on a single GPU varying the number of
elements (E) and the order of the polynomial (N). By varying these two parameters the
changed computational workload on the GPU is changed with which affects the
computational performance. ... 46	

Figure 7.3 The performance of NekBone on a single GPU with different compilers.
1024 elements were used. Cray CCE: Cray CCE v8.4.0 compiler; PGI: PGI v14.9.0
compiler; PGI_CUDA: PGI v14.9.0 with CUDA Fortran. .. 47	

Figure 7.4 Mesh geometry (left) and the instantaneous axial vorticity, displayed for
Re=190000 (right) ... 47	

Figure 7.5 The execution time per iteration with different orders of polynomial using the
CG linear solver and Schwarz preconditioner. 1024 elements were used on a single
GPU. OpenACC: single GPU; MPI: single node with 16 cores. 48	

Copyright © CRESTA Consortium Partners 2014

Figure 7.6 Two–dimensional cut through the domain of the convected-cone problem
showing the grid structure (black squares) and the passive scalar profile (color scale).
Each element (3D cube depicted by a square) corresponds to the mesh of 12X12X12
grid points. .. 49	

Figure 7.7 The strong scalability of NekBone. Total 2,097,152 elements and 16th order
of polynomial are used. .. 50	

Figure 7.8 Strong scaling of non-conformal Nek5000 without mesh adaptivity for the
imbalance tolerance ε equal 1.05 and 1.01. Blue line gives ideal scaling. 51	

Figure 7.9 Elements imbalance as a function of processor number for the imbalance
tolerance ε equal 1.05 and 1.01. .. 51	

Figure 7.10 Partitioning time as a function of processors number. 52	

Figure 7.11 Percentage of runtime spent in fluid evolution stage (SOLVER) and mesh
adaptation (AMR). .. 53	

Figure 7.12 Strong scaling of non-conformal Nek5000 with mesh adaptivity for the
imbalance tolerance ε=1.01. Green line gives ideal scaling. .. 53	

Figure 7.13 Percentage of runtime spent in different stages of mesh adaptation phase
as a function of core number. ... 54	

Figure 7.14 Execution time (for single mesh adaptivity cycle) of different tools in AMR
stage compared with average time per timestep of Nek5000 solver. In this plot
SOLVER does average over the Nek5000 solver stage only and does not include AMR
phase. ... 54	

Figure 7.15 Parallel efficiency of the simulations without (ε=1.05; ε=1.01) and with
(AMR) grid adaptation for non-conformal version of Nek5000. 55	

Figure 7.16 Weak scalability results for Nekbone benchmark on the Titan
supercomputer with up to 16,384 GPUs (red line) and ideal case (black dashed line). 55	

Figure 7.17 Weak scalability results for Nekbone benchmark on the Titan
supercomputer with up to 16,384 GPUs compared with full nodes of a pure CPU
version. ... 56	

Figure 7.18 Weak scalability of non-conformal Nek5000 without (ε=1.01) and with
(AMR) mesh adaptivity. In the AMR case the execution time of the grid adaptation
phase is included in the averaging. .. 56	

Figure 7.19 24 Execution time for a single grid partitioning as a function of processor
number for simulations without (ε=1.01) and with (AMR) mesh adaptivity. In the AMR
case plotted time is an average over 80 grid adaptation cycles. 57	

Figure 7.20 Percentage of runtime spent in fluid evolution stage (SOLVER) and mesh
adaptation (AMR) for the simulation with grid adaptivity. ... 57	

Figure 7.21 Execution time (for single mesh adaptivity cycle) of different tools in AMR
stage compared with average time per timestep of Nek5000 solver. In this plot
SOLVER does average over the Nek5000 solver stage only and does not include AMR
phase. ... 58	

Figure 7.22 Percentage of runtime spent in different stages of mesh adaptation phase
as a function of core number. ... 58	

Figure 7.23 Parallel efficiency of the simulations without (ε=1.01) and with (AMR) grid
adaptation for non-conformal version of Nek5000. ... 59	

Figure 7.24 The strong scalability for Nek5000 using a 14th order polynomial. The total
number or grid points is 3,468 M. ... 60	

Figure 7.25 The strong scalability for Nek5000 using a 16th order polynomial. The total
number of grid points is 5177 M. .. 60	

Figure 8.2: Scaling test on the pipe test case with about 7 million cells. 65	

Copyright © CRESTA Consortium Partners 2014

Figure 8.3: Vampir trace call tree of manually instrumented pimpleDyMFoam on pipe
test case. .. 67	

Figure 8.4: Parallel Performance of OpenFOAM version 1.6-ext and 2.1.1 for the pump
turbine simulation ... 68	

Figure 8.5: Geometry of the pump turbine used for the flow simulations 69	

Figure 8.6: Axial velocity distribution in a cutting plane in the draft tube; colour range: -5
to 2 m/s; left and middle 10M mesh, right 20M mesh; left RANS-SST model, middle
and right IDDES-SST model ... 69	

Figure 8.7: Velocity distribution in the draft tube for the axial (left) and the tangential
and radial component (right) in comparison with measurements 70	

Figure 8.8: Turbulent kinetic energy distribution in the draft tube in comparison with
measurements; solid: resolved part, dashed: resolved and modeled part 70	

Figure 8.9: Visualization of the vortex rope phenomenon with iso-surface of pressure;
top: 10M mesh, left: RANS-SST, right: IDDES-SST, bottom: left: 20M mesh IDDES-
SST, right: experiment .. 71	

Figure 8.10 Pressure pulsations in the draft tube cone for different simulations and
experiment .. 72	

Index	
 of	
 Tables	

Table 3.1 Summary of the previous roadmaps for ElmfireError! Bookmark not
defined.	

Table 3.2 Achievements towards remaining tasks from the previous roadmaps for
Elmfire .. Error! Bookmark not defined.	

Table 3.3 Roadmap to exascale for Elmfire Error! Bookmark not defined.	

Table 4.1 Summary of the previous roadmaps for Gromacs .. 11	

Table 4.2 Achievements towards remaining tasks from the previous roadmaps for
Gromacs ... 12	

Table 4.3 Roadmap to exascale for Gromacs .. 13	

Table 5.1 Summary of the previous roadmaps for HemeLB .. 19	

Table 5.2 Achievements towards remaining tasks from the previous roadmaps for
HemeLB .. 20	

Table 5.3 Roadmap to exascale for HemeLB ... 20	

Table 5.4 HemeLB -performance for a model problem .. 22	

Table 5.5 HemeLB - exemplar simulation runs on ARCHER 23	

Table 6.1 Summary of the previous roadmaps for IFS ... 31	

Table 6.2 Tc1999 5 km model spectral transform test performance, in milliseconds (140
full nodes, 800 fields) .. 34	

Table 6.3 Roadmap to exascale for IFS ... 35	

Table 6.4 Evolution of IFS 10 km L137 model performance using 45,056 cores on
HECToR and TITAN ... 42	

Table 7.1 Summary of the previous roadmaps for Nek5000 .. 43	

Table 7.2 Achievements towards remaining tasks from the previous roadmaps for
Nek5000 ... 44	

Table 7.3 Roadmap to exascale for Nek5000 .. 44	

Copyright © CRESTA Consortium Partners 2014

Table 8.1 Summary of the previous roadmaps for OpenFOAM 63	

© CRESTA Consortium Page 1 of 73

1 Executive	
 summary	

This document contains an update to the two initial roadmaps for the CRESTA codes
described in Deliverables D6.1.1 and D6.1.2. Description of the main developments
and application performance improvements conducted during the project, as well as an
update to the original roadmaps for the separate codes, are summarized in Section 1.1.
Activities related to the co-design progress are summarized in Section 1.2 for each
application separately.

1.1 Summary	
 of	
 progress	
 and	
 roadmap	
 to	
 exascale	

The main progress and roadmap to exascale for each application can be summarized
as follows:

ELMFIRE: Memory consumption has been reduced during the project. Roadmap to
exascale consists of further reducing the memory consumption and finishing the
implementation of the 3D domain decomposition.

GROMACS: The performance has improved during the project. In addition, an
ensemble framework has been implemented to perform massively parallel ensemble
computations consisting of many large parallel simulations. Roadmap to exascale
targets hybrid task parallelism, algorithmic improvements for PME electrostatics and
enhanced use of accelerators in the computations.

HemeLB: The performance and scalability of the code has improved significantly
during the project. In addition, to improve the visualization and computational steering
capability of the code, tools from CRESTA WP5 have been integrated into the code.
Roadmap to exascale targets code optimization towards many-core architectures and
the use of ensemble simulations.

IFS: The performance and scalability of the code has improved significantly during the
project. Several preliminary investigations towards the roadmap to exascale have been
performed, resulting in a robust plan to have an implementation of IFS for exascale via
the use of GPGPU, task graph scheduling and a partially revised codebase.

NEK5000: The code has been enabled to use GPU devices via OpenACC accelerator
constructs. The achieved performance of the multi-GPU implementation is slightly
better than a similar number of CPU nodes. Implementation of adaptive mesh
refinement enables automated refinement of areas of interest in the computation.
Roadmap to exascale focuses on an improvement of multi-GPU communication and an
implementation of an efficient pressure preconditioner for adaptive mesh refinement.

OpenFOAM: Development ceased within CRESTA after M24. Large disruptive
changes are required in order for OpenFOAM to use exascale-level hardware.

1.2 Summary	
 of	
 co-­‐design	
 activities	

The co-design activities for each application are summarized below. For experiences of
the co-design process, see Section 2.1.

ELMFIRE: ABO participated in Lattice Boltzmann on GPUs co-design with HemeLB
and OpenACC co-design and performance evaluation with Cray. In addition,
visualization of simulation results was implemented to ELMFIRE as a co-design effort
with CRESTA WP5.

GROMACS: GROMACS participated in 3DFFT co-design as well as nonblocking
collective co-design with CRESTA WP4. Additionally, as an OpenACC co-design effort
with Cray, a performance comparison between the hand-written CUDA kernels from
GROMACS with compiler generated OpenACC kernels was accomplished.

HemeLB: HemeLB participated in Lattice Boltzmann on GPUs co-design with ABO, co-
design related to pre –and postprocessing with WP5, and nonblocking collective co-
design with WP4.

© CRESTA Consortium Page 2 of 73

IFS: IFS participated in Fortran coarrays co-design with CRAY and development
environment co-design with TUD. Task graph co-design work on OmpSs was done in
collaboration with European exascale projects DEEP and MB.

NEK5000: Nek5000 participated in global communication and computational kernel
autotuning co-design with WP3 as well as OpenACC co-design with Cray.

OpenFOAM: OpenFOAM participated in numerical libraries co-design with WP4.

© CRESTA Consortium Page 3 of 73

2 Introduction	

This document contains roadmaps detailing the actions needed to further develop the
CRESTA codes towards exascale performance after the end of the project.

For all applications, except OpenFOAM, the document also illustrates the performance
and scalability improvements achieved during the course of the project. For
OpenFOAM, an analysis is presented on why the code is not an exascale-capable
code and what kind of design principles should be applied should a code with a similar
functionality be developed.

The roadmaps and results for the different applications are presented in the following
chapters. The functionality and research goals of the applications can be summarized
as follows:

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and
interaction between high-speed particles in a torus-shaped geometry on a three-
dimensional grid. The particles are held together by an external magnetic field. The
objective is to simulate significant portions of large-scale fusion reactors like JET or
ITER.

GROMACS: is a molecular dynamics code which is extensively used for simulation of
biomolecular systems. Useful investigation of this kind of system is typically limited by
computational capacity. The limitations relate both to system sizes and in particular
time duration of the processes of interest. Efficient implementation of ensembles of
simulation are also needed in order to obtain statistical validity.

HemeLB: is intended to form part of a clinically-deployed exascale virtual physiological
human. HemeLB simulates blood flow in measured blood vessel geometries. The
objective is to develop a clinically useful exascale tool.

IFS: is the production weather forecasting application used at the European Centre for
Medium Range Weather Forecasts (ECMWF). The objective is to develop more
reliable 10-day weather forecasts which can be run in an hour or less.

NEK5000: is an open-source code for the simulation of incompressible flow in complex
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000.

OpenFOAM®: is an open source application for computational fluid dynamics (CFD).
The program is a “toolbox” which provides a selection of different solvers as well as
routines for various kinds of analysis, pre- and post-processing. Besides general
development of the code, within this project the focus will be on a specialized code for
turbo machinery. The objective is to simulate a whole hydraulic machine on exascale
architectures.

2.1 Co-­‐design	
 process	

Co-design has been used for decades to aid software and hardware design [1]. One of
the main questions at the beginning of the project was whether the co-design idea can
be made to work. To answer the question in short: yes, the co-design process as it was
implemented in the project was clearly beneficial to the CRESTA applications. For
similar discussion with a broader focus on how the co-design process can be made to
work, see [2].

The obtained benefits of co-design differed somewhat between the applications. Also,
in order to have a less unequivocal picture, one needs to consider the opposite, i.e.,
what were the benefits of the co-design applications to the other parts of the project?
Both of these viewpoints are discussed in the following two subsections, albeit with
somewhat more focus on the benefit to the applications themselves.

2.1.1 Application	
 development	
 and	
 the	
 co-­‐design	
 process	

In this subsection, we highlight some of the cases where application development
benefited from the co-design collaboration.

© CRESTA Consortium Page 4 of 73

HemeLB,	
 computational	
 steering,	
 domain	
 decomposition	
 and	
 visualization	

With WP5, an improved toolkit for visualization and computational steering was
implemented to replace the old visualization toolset in HemeLB. In addition, to improve
the partitioning, domain decomposition libraries from WP5 were used to implement a
prototype of a partitioner for sparse geometries.

IFS,	
 Fortran	
 coarrays	

With Cray, overlapping of communication and computation in the context of OpenMP
parallel regions was implemented in IFS. As using Fortran coarrays within OpenMP
had not been attempted before in a production application, close collaboration with
Cray was essential both in the design phase as well as in the implementation process
itself.

Nek5000,	
 autotuning	
 of	
 computational	
 kernels	

With WP3, autotuning work on key computational kernels was performed. The new
autotuned kernels improve the computational performance over the previously used
handwritten kernels.

2.1.2 Applications	
 as	
 co-­‐design	
 process	
 vehicles	

In this subsection, we highlight some of the cases where co-design applications had a
clear benefit to the systemware developers.

Cray,	
 comparison	
 of	
 GROMACS	
 kernels	

GROMACS developers provided their handwritten CUDA compute kernels to Cray for
comparison with functionally identical kernels written with OpenACC. The work
provided improvements to the register usage of the Cray OpenACC compiler,
improving the performance of the compiler-generated code.

WP5,	
 autotuning	
 of	
 Nek5000	
 computational	
 kernels	

Nek5000 developers provided their key compute kernels to WP3 for autotuning work.
The kernels provided a realistic test bed for autotuning tools developed in WP3 and
showed that using computer generated parameter searches can provide actual
performance benefits in production applications.

2.1.3 CRESTA	
 application	
 developer	
 perspective	
 to	
 co-­‐design	
 process	

In this subsection, we describe from an application developer perspective how the co-
design process was implemented within CRESTA.

For application developers in CRESTA WP6, establishing a functional co-design
collaboration with another member of the project was, at least in some cases, a
relatively long process. Formation of a co-design team was done as follows:

1. Establish contact with the other members of the co-design team
2. Make a collaboration plan
3. Formally establish the co-design team

Usually the co-design work was initialized via personal contacts established during
CRESTA collaboration meetings. The key issue was to get the developers to know the
problem area the potential candidates for collaboration were working upon.
Establishing personal contacts via collaboration meetings was an effective but not
necessarily the fastest method for building the co-design teams, as people new to the
project were mostly unknown outside of their own work package until the next, typically
biyearly, collaboration meeting had been held. Further details of the work were then
agreed upon after the meeting via email, mailing lists, conference calls or even
personal visits. This included the construction of a plan on how to progress with the
newly defined co-design task.

Finally, whenever deemed appropriate, a co-design team was formally formed to
handle the co-design task. Most of the communication was established via continuous
personal contacts with the involved parties. Personal visits and small meetings were
also used to work together and better agree upon outstanding issues, although, due to

© CRESTA Consortium Page 5 of 73

geographical separation of the project members and the associated travelling
overhead, such collaboration methods were used rather sparingly.

The results of the co-design teams were presented during CRESTA collaboration
meetings and, during later stages of the project, via CRESTA white papers. Some of
the presentations led to co-design work being extended to include more partners to
benefit from the results. In some cases, when the task of the co-design team was
finished, the team disbanded as being no longer necessary.

2.1.4 Conclusions	
 on	
 the	
 co-­‐design	
 process	

When interviewed at the end of the project, all application developers who had been
involved in co-design considered the experience very positive. Many commented that
having domain experts from another field significantly sped up the development
process and cut down implementation time. For instance, people involved in the
Fortran coarrays co-design effort argued that the development would have been much
more difficult (or even near to impossible) without the help of the Cray experts.

In CRESTA, the start-up cost to have a productive co-design effort was non-negligible.
Thus avoiding projects which are too short in duration is recommended in order to
avoid unnecessary overhead. In order to speed up the formation of the co-design
teams with a mixed base of people, we recommend establishing an easily accessible
list which describes the expertise, contact details and co-design efforts in which each
person within the project is involved. Organizing several co-design meetings early on in
the project to establish personal communication channels is highly recommended as
well.

Mini applications mimicking the behavior of the full application were used in CRESTA
to study whether or not and idea was worth pursuing in an actual application. Relying
solely on mini applications is not recommended, however, as it may not give an
accurate view of the difficulties faced when implementing changes to a real world
production code. Such difficulties were demonstrated in CRESTA by the rather
straightforward use of OpenACC directives to port the Nekbone benchmark to use
GPGPUs. This was followed by a rather long but eventually successful process of
porting the actual Nek5000 application to GPGPUs with OpenACC.

To conclude discussion on co-design within CRESTA, we state that the co-design idea
was a powerful tool for efficiently conducting cross-disciplinary work. According to the
experiences gathered by application developers, we recommend the use of co-design
as a tool in other exascale software efforts as well.

2.2 References	

[1] Sanders, E. B. N. and Stappers, P. J. Co-creation and the new landscapes of

design. Co-design, 4(1), 5-18. 2008.
[2] Dongarra, J. et al. The international exascale software project roadmap.

International Journal of High Performance Computing Applications,
1094342010391989. 2008.

2.3 Glossary	
 of	
 Acronyms	

ACML AMD Core Math Library

AMI Arbitrary Mesh Interface

AMR Adaptive Mesh Refinement

CAF Coarray Fortran

CSC CSC – IT Center for Science Ltd.

CPU Central Processing Unit

DLR Deutschen Zentrums für Luft- und Raumfahrt

ECMWF European Centre for Medium-Range Weather Forecasts

© CRESTA Consortium Page 6 of 73

ECSE Embedded Computer Software Engineering

ENDA Ensemble Data Assimilation System

EPCC Edinburgh Parallel Computing Centre

EPS Ensemble Prediction System

FFT Fast Fourier Transform

GGI General Graphics Interface

GNU GNU's Not Unix!

GPL GNU General Public License

GPU Graphics Processing Unit

HPC High Performance Computing

INCITE Innovative and Novel Computational Impact on Theory and Experiment

I/O Input/Output

ITER International Thermonuclear Experimental Reactor

JET Joint European Torus

KTH Kungliga Tekniska Högskolan

LB Lattice Boltzmann

LGPL GNU Lesser General Public License

MPI Message Passing Interface

OpenACC Open Accelerators

OpenMP Open Multiprocessing

PETc Portable, Extensible Toolkit for Scientific Computation

PGAS Partitioned Global Address Space

PME Particle Mesh Ewald

SIMD Single Instruction, Multiple Data

UCL University College London

USTUTT University of Stuttgart

© CRESTA Consortium Page 7 of 73

3 Elmfire	

Elmfire is a particle-in-cell code that simulates the movement and interaction between
extended gyrokinetic particles moving at high speed in a torus-shaped geometry on a
three dimensional grid. The particles are held together by a strong external magnetic
field.

Elmfire approximates the Coulomb interaction between particles by solving a global
electrostatic field on a grid, using the particle charges as sources. Elmfire then
advances particles in time by free streaming along the magnetic field line and particle
drift perpendicular to the magnetic field. Typically, time steps correspond to 30-50ns of
real time.

The time step based simulation in Elmfire can be roughly divided into seven parts:

• Perform collisions between particles close to each other;
• Using a 4th order Runge-Kutta, calculate particle movements in continuous space

during the time step based on the electric field;
• Collect grid cell charge data from the particles for the electrostatic field;
• Combine and split the grid charge data so each processor has a smaller part of it;
• Construct a large modified gyro kinetic Poisson equation based on the data and

solve it in parallel;
• Calculate additional movement caused by magnetic field drift of particles based on

the acquired electric field;
• Write diagnostics output.

Presently, the most CPU-heavy part of the code is calculating particle movements, but
as each processor is assigned a fixed number of particles this scales linearly with the
number of processors and is therefore not the most significant issue when scaling to
larger systems. The most problematic part is the collection and distribution of grid cell
charge data. In the current version each processor can have its assigned particles
moving in any part of the torus, leading to all processors contributing charge data to all
grid cells in the system. As a consequence each processor has the full electrostatic
grid data and a huge sparse matrix, the size of which is the number of grid cells
squared, for collecting charge data. To place this in context, simulating ITER with this
version of the code would require 640K cores, each with 28TB of memory.

To reduce the memory consumption, a new domain decomposition algorithm has been
written for Elmfire within the CRESTA project. This has been a significant re-design as
it has involved changes to almost all the components of Elmfire. Within this, the
simulation volume is divided among cores to harmonize with the equations of motion.
The domain decomposition is in line with high particle speeds in the toroidal direction.
The result is a diminished memory usage per core, as the simulation volume
considered by one core has been reduced drastically.

Within Elmfire all the cores collaborate to solve the Poisson equation and further
optimization has been achieved through a co-design process with WP4 to implement a
modified version of the Poisson equation, to further enhance the memory utilization.
Once the grid cell charge data has been combined and split among the processors,
each processor can construct its own part of the Poisson equation individually. The
Poisson equation is then solved in parallel using PETSc. The solution (the electric
potential) is then distributed to all processors to be used in the next time step.

While further memory improvements can and will be made in the future, the
implementation of a domain decomposition version of Elmfire has significantly
decreased the memory utilization.

© CRESTA Consortium Page 8 of 73

3.1 Summary	
 of	
 the	
 previous	
 roadmaps	

Task Scheduled date Status

3D domain decomposition M22 Completed

Processor load balancing M28 Completed

Memory usage for binary
collisions

M36 Completed

Parallel file writing M36 Completed
Table 3.1 Summary of the previous roadmaps for Elmfire

3D	
 domain	
 decomposition	

Prior to CRESTA, the code implemented as 1D decomposition in the toroidal direction
with a full electrostatic grid on each processor, with all processors having particles in
any given grid cell. During CRESTA we have implemented a 3D domain decomposition
where each processor owns a subgrid of the electrostatic grid and all particles within
these grids. This diminishes the memory consumption of each processor which
otherwise would grow with grid size. The domain decomposition is streamlined with the
time evolution of the particles in the sense that very large particle velocities are
common in the toroidal direction (contained fully in the domain of one core) while
velocities are much smaller in the cross sectional directions (particles may be handed
over to cores owning neighboring grid volumes). At the same time each processor
needs only a small part of the electrostatic grid close to its own volume in order to be
able to propagate particles during one time step.

Processor	
 load	
 balancing	

Each processor is allocated approximately the same number of particles according to
the initial assumed particle distribution, denser in the centre, fewer particles at the outer
surface, by allocating full circles of subgrids in the toroidal direction.

Memory	
 usage	
 for	
 binary	
 collisions	

Previously Elmfire communicated particle locations in order to simulate particle
collisions. In the new domain decomposition, processors automatically contain all
particles in any given grid cell and thus binary collisions can be simulated with no
communication.

Parallel	
 file	
 writing	

Within CRESTA, Elmfire has been written to use hdf5 file I/O for dumping aggregated
data (densities, energies, etc). Future plans beyond CRESTA are to include snap-
shotting particles in Elmfire for restart purposes using parallel file I/O. This is planned
for the year 2015.

3.2 Achievements	
 towards	
 remaining	
 tasks	

Task Achievement

Parallel file writing All file I/O now use the hdf5 library
Table 3.2 Achievements towards remaining tasks from the previous roadmaps for Elmfire

3.3 Roadmap	
 to	
 exascale	

Task Estimated effort Status

Rewriting memory
allocation and structure for
the Poisson equation

M18 Ongoing

Table 3.3 Roadmap to exascale for Elmfire

3.3.1 Rewriting	
 memory	
 allocation	
 and	
 structure	
 for	
 Poisson	
 equation	
 	

Prior to CRESTA, each processor allocated memory for the full Poisson grid. The
domain decomposition developed within CRESTA ensures that each processor owns a

© CRESTA Consortium Page 9 of 73

small part of the Poisson grid. Future work will consider additional optimizations to
further reduce the amount of allocated memory per processor.

3.4 Application	
 performance	
 and	
 scalability	

Performance runs have been carried out with the new domain decomposition code on
half a billion particles on up to 4096 cores on Sisu (Cray XC40). The numbers below
describe weak scaling where we increase the number of grid points while keeping the
number of particles per grid point constant for load balancing reasons. From a physical
point of view the increase in grid size corresponds to larger tokamak simulation
volumes, the largest being 256x256 grid points in the cross section and 16 grid points
along the toroidal direction corresponding roughly to a fusion reactor with cross section
diameter of 1 m.

Cores Grid size # of particles # of particles/core

128 32x64x16 14329856 111952

256 64x64x16 26005504 101584

512 64x128x16 52692992 102916

1024 128x128x16 107876352 105348

2048 128x256x16 206671872 100914

4096 256x256x16 444991488 108640

These results demonstrate that memory consumption per core is currently almost
proportional to the number of particles, a significant achievement and an original
objective set within CRESTA.

Figure 3.1 Elmfire memory scalability per core in a weak scaling test for a model problem

Beyond CRESTA, future performance studies will look at even larger systems. In
particular, during 2015 the plan is to investigate particle collisions.

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

M
em

or
y	

M
B/
co
re
	

#	
 of	
 cores	

Weak	
 scaling	
 memory	
 (100k	
 parVcles	
 per	

core)	

Original	
 memory	
 per	
 core	

(MB)	

New	
 memory	
 per	
 core	
 (MB)	

© CRESTA Consortium Page 10 of 73

3.4.1 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	

The implementation of a 3D domain decomposition has resulted in improved memory
consumption and memory organization, and hence better scalability. This was the main
objective of the work within CRESTA as memory consumption was a significant block
towards scaling this code to future (exascale) systems. In addition co-design
optimization work with WP4 on the linear solver has improved the code’s overall
performance. Elmfire has been written to use hdf5 file I/O for dumping aggregated data
(densities, energies, etc). Finally, the original code was a “patch-work” of added
features, and significant work has gone into rewriting the code for better readability and
structure.

3.5 References	

[1] Exemplar scientific simulations, CRESTA Deliverable D6.4.

 	

© CRESTA Consortium Page 11 of 73

4 Gromacs	

GROMACS is a major open source code that performs classical molecular dynamics
simulations based on interactions between particles moving in space, typically for
biomolecular systems. It has been developed for over 15 years, initially with a large
focus on the highest possible single-core performance. Over the last few years we
have made a complete overhaul of the parallelization approach and the code currently
exhibits some of the best relative scalability in the field.

The main challenge for classical molecular dynamics in general - and GROMACS in
particular - is that it relies on integration of Newton’s equations of motion, and high
performance therefore requires very fast iterations over integration time-steps. This has
largely driven the past 20 years of development and thus the current algorithms are
focused on providing simple interaction forms to reduce the floating-point instruction
bottleneck.

Historically, runtime for codes performing molecular dynamics was completely
dominated by the evaluation of interactions between particles and, at least in principle,
this lends itself very well to parallelization. Unfortunately the last 20 years of
optimization focused on algorithms to avoid floating-point operations has resulted in
complex data structures and inhomogeneity in interaction density over space that
makes efficient parallelization challenging. In this regard, GROMACS is a particular
challenge since the single-core performance is significantly higher than many other
codes and thus the time spent on communication is relatively larger [5].

The work in GROMACS focuses on achieving significant improvements for real
applications. From the end user perspective, there are three overall important
objectives to advance the state-of-the-art for applications

(i) Reduce the wall-clock time per time-step of iteration in order to achieve
longer simulations.

(ii) Handle much larger application systems to model e.g. mesoscopic
phenomena.

(iii) Improve the accuracy and the results for small application systems through
massive sampling.

All three aspects are critically important, but require slightly different approaches. The
wall-clock time for a single time-step iteration is already today in the range of a few
milliseconds on some systems, and even though strategies exist to improve this
further, we do not believe that it is possible to push more than one order of magnitude
beyond today’s standard. In contrast, handling much larger systems is easier (although
not trivial) from the point of view of a parallelization algorithm. Unfortunately it will
involve challenges related to handling of data when a single master node can no longer
control all of the input and output, both when starting the execution and when
performing checkpointing or output. Finally, for small systems, the main approach will
be the use of ensemble techniques to handle thousands of small simulations each of
which will use thousands of cores.

4.1 Summary	
 of	
 the	
 previous	
 roadmaps	

Task Scheduled

date
Status

Benchmarking new Gromacs releases, and GPU coding M18, M30 Completed

Multi-grid solvers for efficient PME electrostatics M36 Ongoing

Task-based parallelism M36 Ongoing

Efficient large-scale I/O M36 Ongoing

Ensemble computing & parallel adaptive molecular dynamics M36 Completed
Table 4.1 Summary of the previous roadmaps for Gromacs

© CRESTA Consortium Page 12 of 73

Benchmarking	
 new	
 Gromacs	
 releases,	
 and	
 GPU	
 coding	

The Gromacs 5 release was completed, and has been benchmarked for use in
upcoming publications. The CRESTA benchmark suite was updated to use the features
implemented during the CRESTA project. Through our ongoing collaboration with
NVIDIA, CUDA features unveiled at SC'14 were already supported in the Gromacs
development branch.

Multi-­‐grid	
 solvers	
 for	
 efficient	
 PME	
 electrostatics	

Changes to Gromacs to be able to use ExaFMM (http://www.bu.edu/exafmm/) for
multipole-based long-range electrostatics are underway. The dominant implementation
of full electrostatics used by domain scientists has been the particle-mesh Ewald
method (PME), and the code in Gromacs for full electrostatics treatments needs
extension and generalization to permit multiple implementations to co-exist.

Task-­‐based	
 parallelism	

Extensive preparations for full-scale conversion to task parallelism are in progress. We
have identified Intel's Thread Building Blocks (http://www.threadbuildingblocks.org) as
the tasking framework most likely to deliver performance portability in Gromacs. It is
implemented as a C++98 library, has a permissive source-code license, and seems
likely to provide control at sufficiently fine grain to keep per-task overheads to at most
around 1 microsecond (required for improving strong scaling with Gromacs). We have
submitted numerous bug reports to Intel to improve the support in TBB with non-Intel
compilers.

Efficient	
 large-­‐scale	
 I/O	

The exascale-suitable implementation of the TNG compressed output-file format [7][8]
was completed in Gromacs 5. Like other I/O implementations in Gromacs, it currently
runs in serial. This is not yet a critical problem to solve, since typically only a small
fraction of the atoms in the system are of interest and the period with which statistically
independent output is available is only every thousand or more MD steps. It has been
planned for the I/O code to run in parallel as a non-blocking task in the new tasking
framework.

Ensemble	
 computing	
 &	
 parallel	
 adaptive	
 molecular	
 dynamics	

Copernicus 2.0 has been released, [3], and is in use in production simulations. For
instance, by using Copernicus we have been able to scale a protein folding problem to
5730 cores – reducing time-to-solution from 30 days to 72 hours. Copernicus currently
includes implementations of the following adaptive sampling algorithms: Markov state
modelling, adaptive free energy perturbation and a string method for minimum free
energy pathways. Each of these typically scales to hundreds or thousands of
simulations in parallel, each of which itself can be parallelized to tens to hundreds of
cores, making simulations with more than 1M cores feasible.

4.2 Achievements	
 towards	
 remaining	
 tasks	

Task Achievement

Multi-grid solvers for
efficient PME
electrostatics

Early implementation using ExaFMM for full
electrostatics.

Task-based parallelism Planning, core infrastructure changes.

Efficient large-scale I/O Implementation of the actual efficient I/O.

Improved domain-
decomposition halo
exchange

First implementation completed and under testing.

Table 4.2 Achievements towards remaining tasks from the previous roadmaps for Gromacs

© CRESTA Consortium Page 13 of 73

4.3 Roadmap	
 to	
 exascale	

Task Estimated effort Status

New decomposition for
bonded interactions

1 PM Code in progress

Task-based parallelism 18 PM Ongoing

Efficient large-scale I/O 1 PM Ongoing, depends on
task-based parallelism

Improved domain-
decomposition halo
exchange

1 PM Under testing

Multi-grid solvers for
efficient PME
electrostatics

6 PM Ongoing

Table 4.3 Roadmap to exascale for Gromacs

4.3.1 New	
 decomposition	
 for	
 bonded	
 interactions	

The existing dynamic load balancing algorithm in Gromacs is based on adjusting the
size of the spatial domains decomposed onto MPI ranks. After benchmarking the
enhancements supported by CRESTA, it became clear that the existing dynamic load
balancing algorithm was not able to perform well enough on important scientific
problems.

As an example, consider simulations of a protein embedded in a lipid membrane
solvated in water, which are especially difficult in this sense. The distribution of the
interactions is heterogenous, water is mostly electrostatic with some van der Waals
required, lipid is normally only van der Waals and bonds but on the other hand the
protein itself needs all three. Other kinds of simulations can have even bigger
problems. The obvious course of action, as implemented in Gromacs 4.6, was to
assign multiple cores to an MPI rank using OpenMP and hope that sufficiently large
spatial domains can be used in order to alleviate the problem in practice. However, our
hybrid MPI/OpenMP implementation was slower on CPU-only machines than a pure
MPI at low-to-moderate scale and was useful only at the strong-scaling limit. This
suggested the following steps:

• Look for improved implementations for distributing the workload within the cores
of MPI ranks (to be discussed below).

• Attempt a redistribution of work not based on spatial locality.

In Gromacs 4.6 and 5, the spatial domains (i.e., the MPI ranks) which primarily handle
water molecules have no bonded-interaction work to do, due to the water models being
predominantly rigid. Cores of such ranks may lie completely idle. This is particularly a
problem if accelerators are used and if the dynamic load balancing has assigned them
an abnormally large spatial domain, although partial non-offload of short-range work
would alleviate the problem somewhat. The domains that are mostly protein or lipid
have a minimum size dictated by the implementation details of the non-bonded
interactions (i.e., the short-ranged cut-off), so there is a minimum amount of bonded
work that can only be performed on that rank. Load balancing problems arising from
waiting for that work to complete can then limit the overall throughput.

Work is underway to redistribute bonded work evenly across a subset of MPI ranks,
using non-blocking communication overlapped with short-range or PME work. This will
improve performance through better load balancing, even if it does not directly improve
strong scaling. Taking full advantage of such possibilities may require a better task-
parallel implementation, as discussed below.

© CRESTA Consortium Page 14 of 73

4.3.2 Task-­‐based	
 parallelism	
 	

Extensive preparations for full-scale conversion to task parallelism are in progress.

Conversion of the code base to compile as C++ is underway; now most of the ~1
million lines of performance-sensitive code compiles as C++. The conversion has
exposed numerous minor bugs, and our continuous integration machinery runs
valgrind, cppcheck, clang's static analyzer, Thread Sanitizer and Address Sanitizer,
and also runs on five major compilers and five major operating systems in a bid to
ensure highly portable, correct code.

Code transformations to express the bonded interaction kernels as tasks and the PME
implementation in a task-parallel pipelined manner are underway. These
transformations will make available some computation that can overlap in a task-
parallel implementation once MPI 3 non-blocking collectives are deployed in PME.

These tasks can then be implemented and scheduled using a tasking framework,
which will finally allow performance measurements of the suitability of TBB (or perhaps
OpenMP or others).

Once these lessons are learned, the best path for expansion of the tasking scheme to
other parts of the MD loop (update, constraints, short-ranged interactions) will become
more clear.

4.3.3 Efficient	
 large-­‐scale	
 I/O	

When the user schedules periodic output of simulation information, the data can be
packaged into a task and executed at low priority. For example, many cores currently
lie idle during the hard-to-parallelize update, constraint and neighbour-search phases.
This requires extra memory, but this is not a problem for MD simulations. It remains to
be seen whether

• low-priority preprocessing tasks, followed by non-blocking transfer of output
data to a master MPI rank, followed by asynchronous serial file I/O, or

• non-blocking MPI transfer of raw output data to a master MPI rank, followed by
low-priority preprocessing tasks, followed by asynchronous serial file I/O, or

• low-priority preprocessing tasks, followed by non-blocking parallel I/O

is fastest in practice. The work to implement such a scheme is most efficiently done
when the tasking scheme is in place (at which point, relaxing the serialization point
might become truly necessary!)

4.3.4 Improved	
 domain-­‐decomposition	
 halo	
 exchange	

The spatial domains that are the primary decomposition of work to MPI ranks in
Gromacs need to exchange information on positions and forces of atoms of interest to
neighbouring domains. This has to happen at each MD step. The implementation in
Gromacs 4.0 used pulses along the three spatial grid dimensions to up to two
successive neighbouring ranks [5]. This has been re-written to do a more classical halo
exchange that communicates directly with the (up to) 7 neighbours in the “eighth-shell”
decomposition used [4]. The new implementation directly anticipates improvements in
intra-rank performance expected from task-parallelism, and prepares for FMM support
and completion of more features of the Verlet cut-off scheme introduced in Gromacs
4.6 [8].

4.3.5 Multi-­‐grid	
 solvers	
 for	
 efficient	
 PME	
 electrostatics	

Exascale performance in MD on scientific problems of interest will require the use of
implementations for modelling long-ranged interactions that scale linearly with the
number of cores. For instance, current implementations of PME require all-to-all
communication patterns that will not scale well enough. The fast multipole method
(FMM) has long been identified as a strong candidate to replace PME, because the
performance of its implementation should scale linearly both in the number of particles
and the number of cores. Until recently, the lack of available high-quality FMM
implementations sufficiently general to be adapted for use in MD has impeded the

© CRESTA Consortium Page 15 of 73

progress. Two implementations of the FMM in Gromacs are now underway (only one is
supported by CRESTA). These changes require significant adaptation of the existing
Gromacs machinery for computing short-ranged interactions within a sphere to perform
the components of the point-to-point component of the FMM in a (typically) non-
spherical region.

4.4 Application	
 performance	
 and	
 scalability	

4.4.1 Efficient	
 strong	
 scalability,	
 model	
 problem	

Trends in Gromacs strong scaling over the liftetime of CRESTA on an ion-channel
benchmark case can be seen in Figure 4.1. The introduction of the Verlet scheme and
the associated AVX support account for a large part of the improvements in
performance in Gromacs 4.6 [8]. The availability of OpenMP in Gromacs 4.6 permits
that scaling to extend to higher core counts, effectively relaxing the geometric
constraints on the domain decomposition. Gromacs 5.0 adds support for the AVX2
instruction set, which works very well, though at higher core counts load imbalance and
perhaps network configuration dominate the performance.

Figure 4.1 Scaling performance of Gromacs 4.5, 4.6 and 5.0 on Sandy Bridge (SNB) and Haswell
(HSW) x86 platforms. Measurements with Gromacs 4.5 and 4.6 were done on triolith (8-core 2.2GHz
Sandy Bridge nodes); measurements with Gromacs 5 were done on a machine with 2 16-core
2.3GHz Haswell processors per node. The simulation system was a 150K atom ion channel, using
PME and 2fs time steps.

Strong scaling of Gromacs on BlueGene/Q also performs well on a range of
benchmark cases (found in the CRESTA benchmark suite), as seen in Figure 4.2. In
the maximally favourable case of the LJPME water simulation, where there is no
external network noise, no per-rank load imbalance and a communication network
which is relatively strong compared to the computing power of the processor, Gromacs
5.0 can scale down to 32 atoms/core. Higher throughput and lower scaling is available
on commodity x86 hardware, however (see Figure 4.1).

© CRESTA Consortium Page 16 of 73

Figure 4.2 Scaling performance of Gromacs 5 on BlueGene/Q on three model simulation systems

Gromacs also has a first-class CUDA port, whose strong scaling performance is
excellent. In Figure 4.3, we see the previously-reported scaling of the PME model in
Gromacs 4.6 on GPUs on a range of similarly-sized model systems [2].

Figure 4.3 Strong scaling performance of Gromacs 4.6 on nodes with Ivy Bridge CPUs and two K20
GPUs.

© CRESTA Consortium Page 17 of 73

4.4.2 Efficient	
 weak	
 scalability,	
 model	
 problem	

Improvements in weak scaling capability is not a primary target for Gromacs, because
the physical size and model resolution of scientific problems is essentially fixed.
Nonetheless, for model physics with linear scaling, and apart from the known issue with
writing trajectory output, weak scaling has been an essentially solved problem since
Gromacs 4.5 [2].

Even for a non-linear scaling algorithm, such as the Lennard-Jones PME
implementation in Gromacs 5, useful weak scaling can be seen in model problems
such as the water simulation shown in Figure 4.4.

Figure 4.4 Gromacs weak scaling performance on BlueGene/Q on a non-linear-scaling physics
model (combined Lennard-Jones+Electrostatic PME on a large box of water)

4.4.3 Efficient	
 strong	
 scalability,	
 exemplar	
 scientific	
 simulation	

Efficient strong scalability of Gromacs on an exemplar scientific simulation was
demonstrated in CRESTA Deliverable 6.4 (see Table 4.6 and Figure 4.3) [10].

4.4.4 Efficient	
 weak	
 scalability,	
 exemplar	
 scientific	
 simulation	

Efficient weak scalability of Gromacs on an exemplar scientific simulation can be seen
in CRESTA Deliverable 6.4 (see Table 4.6 and Figure 4.3) [10].

4.4.5 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	

The two major reasons behind the performance improvements in molecular dynamics
simulations in Gromacs achieved during CRESTA are:

• Rewrite of the short-ranged kernels and supporting neighbour-search code and
the associated data structures, in order to directly and efficiently target the
hardware characteristics of both CPU and accelerator cores [9].

• Addition of the support for hybrid MPI/OpenMP parallelism.

This has exposed further critical problems with load balance and intra-rank task
scheduling, and exacerbated the known problems with communication load of both
short- and long-ranged models. Work is underway to alleviate these.

The associated Copenicus software [4] makes it easy to deploy ensemble-style scaling
of Gromacs on peta-to-exascale resources, and forms a key part of our exascale MD
strategy. Since in exemplar scientific problems weak scaling is rarely of interest, the
strong scaling will start to approach limits of available parallelism for fixed-size
problems.

© CRESTA Consortium Page 18 of 73

Also during the lifetime of the CRESTA project, ports to C++98 and the CMake build
system were undertaken and an elaborate continuous integration testing infrastructure
was built. A community code-review policy was introduced and works very well.
Continued improvements in Gromacs performance would not be possible without such
an infrastructure [3].

4.5 References	

[2] Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR,

Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E, GROMACS 4.5: a
high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics 29(7), 845-54 (2013).

[3] Pall S, Abraham MJ, Kutzner C, Hess B, Lindahl E, Tackling exascale software
challenges in molecular dynamics simulations with GROMACS, Exascale
Applications and Software conference EASC14, in press (2014).

[4] Pronk et al., “Copernicus: a new paradigm for parallel adaptive molecular
dynamics”, SC11 High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for. IEEE, 2011.
http://www.copernicus-computing.org.

[5] Bowers, K.J., Dror, R.O., Shaw, D.E.: Overview of neutral territory methods for
the parallel evaluation of pairwise particle interactions. Journal of Physics:
Conference Series 16(1), 300 (2005), http://stacks.iop.org/1742-
6596/16/i=1/a=041.

[6] Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: Algorithms
for highly efficient, load-balanced, and scalable molecular simulation. J. Chem.
Theory Comput. 4(3), 435–447 (2008)

[7] Spångberg D., Larsson D.S.D., van der Spoel D.: Trajectory NG: portable,
compressed, general molecular dynamics trajectories. J. Mol. Mod. 17(10),
2669-2685 (2011) http://dx.doi.org/10.1007/s00894-010-0948-5.

[8] Lundborg M., Apostolov R., Spangberg D., Gardenas A., van der Spoel D.,
Lindahl E.: An efficient and extensible format, library, and API for binary
trajectory data from molecular simulations. J. Comput. Chem. 35(3), 260-9
(2014) http://dx.doi.org/10.1002/jcc.23495.

[9] Pall, S., Hess, B.: A flexible algorithm for calculating pair interactions on SIMD
architectures. Computer Physics Communications 184(12), 2641–2650 (2013),
http://www.sciencedirect.com/science/article/pii/S0010465513001975.

[10] Exemplar scientific simulations, CRESTA Deliverable D6.4.

© CRESTA Consortium Page 19 of 73

5 HemeLB	

HemeLB is a tool for fluid flows in complex sparse geometries. Its main focus is
simulating blood flow in parts of the cerebral arterial network. HemeLB employs an
implementation of the lattice Boltzmann (LB) algorithm which, due to its locality, is
intrinsically easy to parallelize. HemeLB uses MPI for communication and has been
shown to have good scalability up to over 32k CPU cores.

5.1 Summary	
 of	
 the	
 previous	
 roadmaps	

Task Scheduled date Status

Initial Roadmap

Visualisation and Steering M36 Completed

Pre-processing M36 Completed

Introspection M36 Completed

Roadmap update 1

Single core performance M20 Completed

Domain decomposition M24 Completed and extended
(see 3.3)

Hybrid parallelism M30 In progress

Steerable parameter
extraction

M30 Cancelled after partial
result.

Visualisation M36 Completed

Introspection M36 Completed
Table 5.1 Summary of the previous roadmaps for HemeLB

Visualisation	
 and	
 Steering	

To enable in situ visualisation and steering of HemeLB at the exascale, using
visualisation libraries from WP5 partners.

Pre-­‐processing	

To enhance HemeLB’s domain decomposition such that it is viable at exascale.

Introspection	

Exascale applications will need to be able to monitor their own execution to be able to
report and optimise their performance and the environment.

Single	
 core	
 performance	

Based on our benchmarking and comparison to other Lattice-Boltzmann codes, we
believe that there is scope to increase the single-core performance of HemeLB
significantly. This will be undertaken with a fairly conventional profile-optimize cycle.
We will be particularly interested in exploring the effect of changing the data layout to
improve memory behaviour. This last piece of work will be undertaken in conjunction
with the hybridisation task below.

Domain	
 decomposition	

Based on recent measurements, we see that some processes end up with a very large
number of neighbours (~100) compared to the average (~25). These processes cause
a load imbalance that is the primary cause of the sub-linear scaling we see at 32k
cores. We are working with partners in WP5 to trial the PPStee domain decomposition
library in order to improve this.

Hybrid	
 parallelism	

Based on the report by Alan Gray which was the main output of our co-design work, we
will not pursue OpenACC until the software is more mature. However he has shown

© CRESTA Consortium Page 20 of 73

that OpenMP is much more feasible and we will work on this further. The effect of
different memory layouts will be explored in detail here.

Steerable	
 parameter	
 extraction	

In HemeLB we have implemented a property extraction framework that allows the user
to define regions of interest for output, as well as which fields to output and at what
frequency. Currently this must be specified at simulation start. We propose to make this
part of the code steerable at run time, in order to allow the user to quickly home in on
interesting features which can be recorded for more detailed off-line analysis.

Visualization	

We will continue to work with WP5 partners to explore how to couple their visualisation
software with HemeLB.

Introspection	

We have implemented key introspection abilities ourselves which are sufficient for our
needs. We will continue to monitor developments within this arena, but our judgment is
that applications will need to delegate the responsibility of monitoring and acting to
runtime systems, since the complexity and variability of future systems will likely be too
large for an application to find a generic solution. We have therefore paused this
activity until suitable technology is available and there is a compelling need for it.

5.2 Achievements	
 towards	
 remaining	
 tasks	

Task Achievement

Hybrid parallelism In progress. We have performed a preliminary study with
OpenMP as well as OpenACC. The end result of the
study was that in particular an OpenACC port is
challenging for a C++ code like HemeLB. Based on this
outcome, we are now preparing a major port to many-
core architectures. We are also pursuing hybrid
parallelism using ensemble techniques (see 3.3), and
have investigated the use of non-blocking collectives in
HemeLB.

Steerable parameter
extraction

The HemeLB steering client has previously been
recommisioned and benchmarked for performance. For
sustainability reasons we have hooked up HemeLB with
the DLR steering client and suspended any further
development on the HemeLB steering client.

Table 5.2 Achievements towards remaining tasks from the previous roadmaps for HemeLB

5.3 Roadmap	
 to	
 exascale	

Task Estimated effort Status

Automated ensemble
simulation approach

6 PM (4 invested) Ongoing, preliminary
results available.

Stand-alone domain
decomposition tool

4 PM (2 invested) Ongoing, preliminary
results available.

Port to many-core
architectures

18 PM In planning.

Table 5.3 Roadmap to exascale for HemeLB

5.3.1 Automated	
 ensemble	
 simulation	
 approach	

Arteries are subject to a wide range of flow regimes through a patient's life. Thus
comprehensive analysis of flow dynamics within a cerebral artery, a prime requirement
for assessing risks of aneurysm formation and rupture, cannot be performed using a
single simulation instance. In this task we construct an automated approach to create
initial conditions, and instantiate an ensemble of HemeLB simulations, with different

© CRESTA Consortium Page 21 of 73

instances being subject to flow inputs with differing heart rate and blood pressure
values. This task is important for the exascale for two reasons: (I) Exascale machines
will be highly expensive to use, and by performing a comprehensive flow analysis of
cerebral arteries we can more convincingly justify the use of such infrastructures. (II)
Through the incorporation of a range of likely and realistic flow regimes, the
computational requirement of HemeLB will increase by at least one order of magnitude.
We have started on this task during CRESTA, and plan to finalize it in subsequent
projects.

5.3.2 Stand-­‐alone	
 domain	
 decomposition	
 tool	

Figure 5.1 Example visualization of a domain decomposition on a 4.6 million lattice site aneurysm
geometry, partitioned into 128 fragments. We converted the data with an early version of protopart
and relied on PPStee directly (no HemeLB run required).

The lack of a balanced domain decomposition is a major constraint for simulation
performance in solvers relying on sparse geometries [1]. In addition, we observed in
HemeLB that the domain decomposition step fails to scale on larger core counts, and
that we are required to repeat identical domain decomposition steps when running
multiple instances in an ensemble. In this task we construct a stand-alone domain
decomposition tool (with protopart as the working name), and aim to perform the
domain decomposition step outside of HemeLB, improving the scalability of the main
code. In addition, we can experiment with different decomposition approaches without
running instances of HemeLB, accelerating our search for optimal partitioning methods.
We have developed a first version of protopart within CRESTA. In addition, we have a
funded eCSE project, which will allow us to integrate the library with HemeLB.

5.3.3 Port	
 to	
 many-­‐core	
 architectures	

Porting HemeLB to many-core architectures will be a major undertaking, but given the
recent trends (e.g., the emergence of the CORAL architecture [2]) it is likely that such a
port will be essential to complete our preparation to the exascale. We intend to perform
this comprehensive port as part of upcoming projects.

5.4 Application	
 performance	
 and	
 scalability	

In this subsection, we consider the performance and scalability of HemeLB before and
after the CRESTA project.

© CRESTA Consortium Page 22 of 73

5.4.1 Efficient	
 strong	
 scalability,	
 model	
 problem	

As model problems we use two different cases, representing two very different types of
problems. The Huge cylinder test case is simply a large cylinder with 230M lattice sites
with an aspect ratio (length to height) of about 2:1.

Our second test case resembles an actual scientific use case better than the first one.
It is called Arterial bifurcation and it represents a forked artery consisting of 25M lattice
sites. It has a fluid fraction of around 11%, i.e., it is sparse in terms of lattice sites. The
results for both test problems, described in lattice site updates per second, are given in
Table 5.4.

With the Huge cylinder test case we obtain a perfect parallel speedup in terms of site
updates per second when doubling the number of cores. For the first two core counts,
i.e., 12,288 and 24,576, the number of lattice sites per code is about 18,000 or 9000,
respectively. Further doubling of the input data reduces the number of lattice sites per
core to about 4500 and gives a parallel speedup of 1.49. The drop in parallel efficiency
is caused by the rather small local problem size per core as the computation versus
communication ratio becomes too small to achieve perfect scaling.

Due to its sparsity, it is much harder to achieve a good parallel speedup for the second
test case. In Table 5.4 we have given results only for the largest test core count tested,
where we obtained 43 billion site updates per second with only about 2000 lattice sites
per core. Due to the sparsity of the domain, the second test case resembles the
exemplar scientific simulation more than the first one. Thus, when the core counts are
similar, we can expect the performance of the second test case to give an upper bound
to the lattice point updates per second for the exemplar scientific test case.

Domain type Core count Site updates per second

Huge cylinder

(~230 million lattice sites)

12,288 51 billion

24,576 103 billion

49,152 153 billion

Arterial bifurcation, 20
micrometer voxel size

(~25 million lattice sites)

12,288 43 billion

Table 5.4 HemeLB -performance for a model problem

5.4.2 Efficient	
 strong	
 scalability,	
 exemplar	
 scientific	
 simulation	

As part of Deliverable “D6.4 Exemplar scientific simulations” [7], we have performed
several runs with a Circle of Willis geometry, consisting of 73 million lattice sites. We
note that the Circle of Willis geometry is very sparse in terms of lattice sites. Such
sparsity has two main detrimental effects on performance: firstly, it reduces the
beneficial caching effects on a CPU. Secondly, the uneven sparsity of the domain
leads to more load imbalance in the domain decomposition step. Any such load
imbalance is in turn made worse by the lower computation versus communication ratio
of a sparse domain.

Simulation Description of run

 Nodes Total cores Wall time Site updates
per second

Circle of Willis

Scaling test, 10k time
steps, no I/O

32 768 235.0 3.1 billion

© CRESTA Consortium Page 23 of 73

Circle of Willis

Scaling test, 10k time
steps, no I/O

64 1536 132.0 5.5 billion

Circle of Willis

Scaling test,10k time
steps, no I/O

128 3072 68.7 10.6 billion

Circle of Willis

Scaling test,10k time
steps, no I/O

256 6144 37.1 19.7 billion

Circle of Willis

Scaling test,10k time
steps, no I/O

512 12288 23.2 31.5 billion

Circle of Willis

Scaling test,10k time
steps, no I/O

1024 24576 25.3 28.9 billion

Circle of Willis

Production test, 800k
time steps, I/O every
10k time steps

1024 24576 2270.0 25.7 billion

Table 5.5 HemeLB - exemplar simulation runs on ARCHER

5.4.3 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	

As testified by the task list in their previous sections, and their current status, we have
performed a huge range of optimization activities within the CRESTA project. Here we
summarize the improvements achieved in HemeLB, proceeding first with an overview
of the performance improvement and next with an overview of the other benefits
obtained during the CRESTA project.

Figure 5.2 Obtained maximum performance achieved with HemeLB between 2007 and 2014. All
improvements after 2011 were achieved during the CRESTA project. The sparsity of the data sets is
roughly indicated by the colour of the circle (very sparse is red, non-sparse cylinder data sets are
blue), and the core count used by the size of the circle

Raw	
 Performance	
 Power	

© CRESTA Consortium Page 24 of 73

We show the development of the maximum achieved performance of HemeLB over the
years in Figure 5.2, as published in papers and technical reports. At the start of the
CRESTA project, in 2011, we were able to obtain a performance of 9.1 billion site
updates per second using 12,288 cores. As a result of our collaborations in CRESTA,
we now have been able to obtain a performance of 153 billion site updates per second
using 49,152 cores in 2014. This constitutes a performance improvement of a factor
16.8, whereas Moore's law would predict a performance improvement of approximately
a factor 2.8 over that period.

Although the maximum obtained number of site updates per second is a good indicator
of how HemeLB is able to make more efficient use of high-end computing resources, it
is only one of two important performance aspects for scientist users in the field. This is
because in lattice-Boltzmann simulations the number of time steps required to reach
convergence tends to scale with the size of the system modelled. As such, the number
of time steps we can take per second of wall-clock time in HemeLB becomes
increasingly important when we simulate larger problem sizes. In Figure 5.3 we present
this measure for all the runs that we previously presented in Figure 5.2. We find that
our efforts within CRESTA have allowed us to simulate larger geometries than ever,
and that we have managed to increase the rate of simulation to almost 2000 time steps
per second. We believe these benefits are mainly results from our single-core
optimizations, our improvements in domain decomposition, and the advent of newer
and faster architectures such as Intel Ivy Bridge.

For very large data sets (e.g., the huge cylinder), however, we do observe a lower
speed of about 600 time steps per second. Indeed, one of the major future challenges
for HemeLB will be to improve this measure for large problems, allowing us to reach
convergence for these simulations within reasonable time spans.

Figure 5.3 Obtained maximum number of time steps per second achieved, as a function of the
problem size in the simulation (measured in number of lattice sites).

Other	
 benefits	
 to	
 HemeLB	

We have obtained a number of other benefits for HemeLB over the course of CRESTA.
These are listed in what follows.

More	
 robust	
 domain	
 decomposition	
 routines	

In addition to obtaining a better load balance, we are now also able to do domain
decompositions reliably on larger geometries, due to enhancements in the
configurations and use of the underlying partioning libraries. This has allowed us, for
example, to reliably run simulations of a 73M lattice site Circle of Willis geometry.

 	

© CRESTA Consortium Page 25 of 73

Improved	
 visualization	
 and	
 steering	

We have connected HemeLB to the DLR Steering and Visualization client, providing us
with more robust and sustainable software infrastructure to perform in-situ visualization
and steering of ongoing HemeLB simulations.

Improved	
 inter-­‐process	
 intercommunication	

Early in the CRESTA project we implemented the coalesced communication software
pattern [3], allowing us to use sophisticated non-blocking techniques within HemeLB
and systematically organize the different communication concerns in the code (e.g.,
communication required for simulation, visualization or monitoring). In the last year we
have also implemented and tested the CRESTA non-blocking collectives in HemeLB,
achieving comparable performance while simplifying the code base.

Improved	
 diagnostics	

We developed the Property Extraction Framework, which now allows us to
conveniently extract selected macroscopic quantities from our simulations. This
enhancement has made HemeLB considerably easier to use for scientific purpose, and
allows us to work on pre-filtered data sets, reducing the I/O requirements of HemeLB
simulations.

Improved	
 code	
 organization,	
 usage	
 and	
 diagnostics	

As part of our numerous enhancements to HemeLB, we have incorporated a wide
range of unit tests and continuous integration tests. In addition, we have created a
Python-based environment to provide shorthand commands for compiling, configuring
and executing HemeLB simulations on remote resources. Last, but not least, we have
hooked up HemeLB with essential diagnostic tools such as Allinea MAP, DDT and the
MUST checker for MPI correctness (see D3.11 for a comprehensive description of
those activities [8]).

More	
 science	

Although the direct pursuit of domain-specific research with HemeLB is not a direct
goal in CRESTA, we argue that it does play an important role in proving that the work
done in CRESTA has had major benefits for the domain-specific research activities
with HemeLB, raising its profile in the scientific community. For example, using
HemeLB, we have been able to publish new advances in high-profile domain journals
such as J. R. Soc. Interface [4], Physics Review E [5] and Interface Focus [6].

5.5 Code	
 comparison:	
 HemeLB,	
 JYU-­‐LB,	
 AboLB	

5.5.1 Background	

The lattice Boltzmann method has emerged as a potential simulation task that can
scale to exaflops and beyond. In order to explore the level of performance that can be
reached for this kind of simulation, two new codes, the CPU code JYU-­‐LB and the GPU
code AboLBM, were developed in CRESTA and compared against HemeLB for strong
scaling performance. For our comparison three different simulation geometries where
used. The first case was a square duct or empty box, essentially a sample with only
fluid and no solid sites and with a volume of 512 cubed. The second was a porous
media sample representing a sandstone sample with a size of 1024 cubed with a
porosity of around 13%, obtained from R. Hilfer et al. at the Institute for Computational
Physics at the university of Stuttgart [11]. The last sample is the Circle of Willis (CW)
which is the main blood distribution system in the brain. It is a ring-like structure
connecting the internal carotid arteries with the cerebral arteries via a set of
communicating arteries. The geometry used was kindly provided by Prof Figueroa at
KCL [10] and was discretized for simulation with a grid spacing of 3.3e-5 m.

5.5.2 Test	
 Environment	

For the CPU tests ARCHER at EPCC was used. ARCHER is a Cray XC30 machine
consisting of 4920 compute nodes, each with two 12 core Intel Xeon E5-2697 v2

© CRESTA Consortium Page 26 of 73

processors connected together with the Cray Aries interconnect for a total of 118 080
cores with a peak performance of 1.642 PFLOPs.

For our GPU tests we used Titan at Oak Ridge. Titan is a Cray XK7 machine with
18688 compute nodes, Each node consists of one AMD Opteron 6274 16 core CPU
and one Nvidia Kepler K20x GPU giving a total peak performance of 17.590 PFLOPs.

5.5.3 Codes	

We compared two CPU codes and one GPU code with each other. The first CPU code
is HemeLB, the inner workings of which has been presented earlier, in this case
HemeLB was run using the D3Q19 stencil with half way bounce back boundary
conditions For the relaxation model a newly implemented two relaxation time (TRT)
model was used.

The second CPU code, referred to as JYU-LB, was developed at University of
Jyväskylä. It uses the D3Q19 stencil and the TRT collision model. No-slip boundary
condition is implemented with the common halfway bounce-back scheme. Time
propagation is realized with the AA-pattern [9] algorithm that uses a fused
implementation, where the relaxation and propagation steps are executed together for
each lattice site. JYU-LB is parallelized with hybrid strategy using MPI communication
over computation nodes and OpenMP inside the nodes. Subdomains designated to
nodes therefore have close to optimal load balance over threads. However, JYU-LB
only supports Cartesian decomposition (rectangular subdomains) which greatly
simplifies the code, but deteriorates load balance between nodes for non-
homogeneous geometries. Using an efficient differential evolution optimization
algorithm we adjust the positions of the hyperplanes of the Cartesian decomposition
attempting to equalize the number of fluid cells inside the subdomains.

The GPU code, referred to as AboLB, was developed at Åbo Akademi University. It is
similar to the JYU-LB in that it is implemented using the same relaxation operator,
boundary conditions as well as time propagation algorithm. Instead of using OpenMP
to parallelize the computational part however it is offloaded to the GPU using CUDA.
The code also implements asynchronous communication where the CPU will make
progress on the communication while at the same time the GPU is doing the necessary
computation for the current time step. AboLB also supports a more general load
balancing scheme based on rectangular subdomains, and in these comparisons the
load was distributed using a simple recursive bisection approach.

© CRESTA Consortium Page 27 of 73

Figure 5.4 Results for the LB comparison between JYU-LB, AboLB and HemeLB.

0	

20	

40	

60	

80	

100	

120	

140	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

GF
LO

PS
/n
od

e	

Computa[onal	
 nodes	

Porous	
 geometry	

JYU-­‐LB	
 	
 HemeLB	
 AboLB	

0	

20	

40	

60	

80	

100	

120	

140	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

GF
LO

PS
/n
od

e	

Computa[onal	
 nodes	

Square	
 duct	

JYU-­‐LB	
 	
 HemeLB	
 AboLB	

0	

20	

40	

60	

80	

100	

120	

140	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

GF
LO

PS
/n
od

e	

Computa[onal	
 nodes	

CW	
 geometry	

JYU-­‐LB	
 	
 HemeLB	
 AboLB	

© CRESTA Consortium Page 28 of 73

5.5.4 Results	

The three different samples were run using the three different solvers, measuring
strong scaling from 1 to 4096 nodes using the same input data for all codes and
dividing the computational domain into smaller parts as needed. The flops numbers are
derived by measuring the number of site updates per second the codes achieve and
then multiplying the result with the number of floating point operations each site update
consists of on that architecture. For the CPU solver the number of floating point
operations is estimated to be 219 while on the GPU the number of floating point
operations was measured using a profiler to be 279 operations per site update. The
strong scaling performance results for the three lattice Boltzmann solvers using the
three geometries are given in the graphs, measured as GFLOPs/node. Ideally this
number stays constant.

5.5.5 Strong	
 Scalability:	
 Conclusions	

Both CPU based codes benefit from the faster interconnect offered by the Cray XC30
machine. Additionally the Aries interconnect on the XC30 machines is also a more
advanced layout, a dragonfly topology with a fixed worst case number of hops,
compared to the torus interconnect on Titan where the maximum number of hops
between two specific nodes varies based on the status of the machine and the job size.

The JYU-­‐LB shows excellent strong scalability for all geometry cases. It scales from one
compute node to the maximum number of nodes tested without the per node
performance dropping below half of the initial per node performance. The slowest
combination of nodes only drops down to 0.7	
 of	
 the	
 initial	
 performance	
 for the square
duct, 0.66 for the CW geometry and 0.84	
 for the porous geometry. For the square duct
and porous geometry cases the code also achieves super linear scaling, providing the
best performance per node at the largest node count the code was run on. The super
linear scaling phenomena occurs when all the data associated with the current
simulation fits into the L3 cache on the CPUs, in this case the CPUs have 30MB of L3
cache each for a total of 60MB.

HemeLB also shows great scalability for the test geometries, only dropping below half
of the initial per node performance for the square duct case when scaling to 2048
compute nodes. The slowest per node performance compared to the initial
performance for the CW case was 0.74, and 0.53 of the initial performance for the
porous case.

AboLB, the GPU solver appears to have some scalability issues. For all geometries the
performance quickly drops to less than half of the initial per node performance: for the
square duct this occurs when scaling to 512 nodes, for the CW case when scaling to
only 256 nodes and in the porous case AboLB performed the best but the performance
per node still fell slightly below half the initial per node performance when scaling up to
1024 nodes. The code starts scaling poorly when the simulation becomes
communication bound, for the CW case some nodes start missing their communication
deadlines at 32 nodes already, at 256 nodes almost all nodes miss all their
communication deadlines. The Square duct case also start missing all its
communication deadlines when scaling to 256 nodes while the porous media case fairs
slightly better due to the lower ratio of data that needs to be communicated compared
to the total computation per node. The issues are partly due to the network on Titan,
but another factor to consider is also the fact that the GPU is an added component of
the system, meaning that any communication needs to make an additional hop over
the PCI-e bus. Although the added latency from this extra hop is significantly smaller
than the latency of the node to node communication it still does affect the performance
somewhat. 	

5.5.6 Floating	
 point	
 performance:	
 conclusions	

Peak numerical performance for the CPU based codes were achieved at the maximum
number of nodes they were executed on. For HemeLB peak performance was
18371.05 GFLOP for the duct case on 2048 nodes, 13158.33 GFLOPS for the porous
media case on 1024 nodes and 10807.85 GFLOPS for the CW case on 1024 nodes.

© CRESTA Consortium Page 29 of 73

JYU-LB reached a peak performance of 20876.2 GFLOPS for the duct case on 512
nodes, 19395.3 GFLOPS for the porous media case on 512 nodes and 2005.58
GFLOPS on 64 nodes for the CW case. For the AboLB peak performance was reached
on 2048 nodes for all cases and not the maximum 4096 nodes the samples were
scaled to. For the GPU the peak performance was 42896.6 GFLOPS for the duct case,
77228.28 GFLOPS for the porous media case and 15595.9 GFLOPS for the CW case.

Comparing all solvers at 64 compute nodes and all different geometry samples gives a
more even comparison. It is clear that from a total floating point performance
standpoint the AboLB GPU based code is the fastest, all of the additional speed
however is not just due to the fact that the GPUs offer a better theoretical floating point
performance but also due to the massive additional bandwidth available on them. Most
of the difference between the CPU solvers can be attributed to the AA algorithm used
by JYU-LB.

	

Figure 5.5 Total floating point performance for the three LB codes: JYU-LB, AboLB and HemeLB.

	

Both JYU-LB and AboLB have also completed large scale runs using a higher
resolution version of the porous media sample, 16384 cubed instead of 1024 with the
same porosity. JYU-LB was run on Archer using 2880 nodes (96% of the Phase 1
configuration) and was able to reach a performance of 0.078 PFLOPS. AboLB has
been run on 16384 nodes of Titan using half of the high resolution porous media
sample, only half the sample was used due to memory constraints with less than 6GB
available per GPU. Peak floating point performance for this

5.6 References	

[1] “Weighted decomposition in high-performance lattice-Boltzmann simulations:

are some lattice sites more equal than others?”, D. Groen, D. Abou Chacra, R.
W. Nash, J. Jaros, M. O. Bernabeu, P. V. Coveney, EASC 2014 Proceedings
(in press), arXiv preprint arXiv:1410.4713

[2] http://www.hpcwire.com/2014/11/14/coral-signals-new-dawn-exascale-
ambitions/

[3] "Coalesced communication: a design pattern for complex parallel scientific
software”, H.B. Carver, D. Groen, J. Hetherington, R.W. Nash, M.O. Bernabeu,

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

JYU-­‐LB	
 	
 JYU-­‐LB	
 	
 JYU-­‐LB	
 	
 HemeLB	
 HemeLB	
 HemeLB	
 AboLB	
 AboLB	
 AboLB	

Duct	
 Porus	
 CW	
 Duct	
 Porus	
 CW	
 Duct	
 Porus	
 CW	

To
ta
l	
 fl
oa
[n

g	

po

in
t	
 p

er
fo
rm

an
ce
	

(G
FL
O
PS
)	

Total	
 floa[ng	
 point	
 performance	
 at	
 64	
 nodes	

© CRESTA Consortium Page 30 of 73

P.V. Coveney, submitted to Advances in Engineering Software, arXiv preprint
arXiv:1210.4400, 2012.

[4] “Computer simulations reveal complex distribution of haemodynamic forces in a
mouse retina model of angiogenesis”, M.O. Bernabeu, C.A. Franco, M. Jones,
J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, J. Hetherington, H. Gerhardt,
P.V. Coveney, J. R. Soc. Interface (in press), arXiv preprint arXiv:1311.1640,
2013.

[5] “Choice of boundary condition for lattice-Boltzmann simulation of moderate
Reynolds number flow in complex domains”, R.W. Nash, H.B. Carver, M.O.
Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney, Physics Review
E 89, 023033, 2014.

[6] “Impact of blood rheology on wall shear stress in a model of the middle cerebral
artery”, M.O. Bernabeu, R.W. Nash, D. Groen, H.B. Carver, J. Hetherington, T.
Krüger, P.V. Coveney, Interface focus 3 (2), 20120094, 2013.

[7] Exemplar scientific simulations, CRESTA Deliverable D6.4.

[8] Experiences with benchmarks and co-design applications, CRESTA Deliverable
D3.11

[9] Bailey, P., Myre, J., Walsh, S., Lilja, D., & Saar, M. (2009). Accelerating Lattice
Boltzmann Fluid Flow Simulations Using Graphics Processors. International
Conference on Parallel Processing, 2009. ICPP '09.

[10] Coogan, J., Humphrey, J., & Figueroa, C. (2013). Computational
simulations of hemodynamic changes within thoracic, coronary, and cerebral
arteries following early wall remodeling in response to distal aortic coarctation.
Biomechanics and Modeling in Mechanobiology (12(1)), 79-93.

[11] Hilfer, R., & Zauner, T. (2011). High-precision synthetic computed
tomography of reconstructed porous media. Phys. Rev. E , 84 (6), 062301.

 	

© CRESTA Consortium Page 31 of 73

6 IFS	

The Integrated Forecasting System (IFS) is the production numerical weather forecast
application at ECMWF. IFS comprises several component suites, namely, a 10-day
high-resolution forecast model, a four-dimension variational analysis (4D-Var) for
producing the initial conditions for the forecast, an ensemble prediction system and an
ensemble data assimilation system.
The use of ensemble methods are well matched to today’s HPC systems, as each
ensemble application (model or data assimilation) is independent and can be sized in
resolution and by the number of ensemble members to fill any supercomputer.
However, these ensemble applications are only part of the IFS production suite and the
high resolution forecast model (referred to as ‘IFS model’ from now on) and 4D-Var
analysis applications are equally important in providing forecasts to ECMWF member
states of up to 10 to 15 days ahead.
For the CRESTA project it has been decided to focus on the IFS model to understand
its present limitations and to explore approaches to get it to scale well on future
exascale systems.

6.1 Summary	
 of	
 the	
 previous	
 roadmaps	

Task Scheduled date Status

Coarray kernel 4Q2011-1Q2012 Completed

IFS CY37R3 port 1Q2012 Completed

Legendre transform
coarray optimization

2Q-3Q2012 Completed

Semi-Lagrangian coarray
optimization

4Q2012-2Q2013 Completed

Optimization of Fourier
latitude load-balancing
heuristic

2013 Completed

Development of a future
solver for IFS

2014 CRESTA contribution
completed (see below)

Fourier transform coarray
optimization.

3Q2012-4Q2012 Completed

IFS CY38R2 port 1Q2013 Completed

Radiation in parallel
scheme (added)

1Q2013-1Q2014 Completed

Investigate GPU use in IFS 2Q2013-4Q2013 Completed

Investigate graph based
(DAG) parallelization

2H2013-2014 Completed

Table 6.1 Summary of the previous roadmaps for IFS

Coarray	
 kernel	

Develop kernel to investigate overlapping computation and communication using
Fortran2008 coarrays in an OpenMP parallel region.

IFS	
 CY37R3	
 port	

Port of IFS model (CY37R3) to HECToR and analysis of performance for model
resolutions up to T2047 (10km grid).

Legendre	
 transform	
 coarray	
 optimization	

Optimization of the IFS transform library to overlap the computation of the Legendre
transforms with the associated communications (TRMTOL/TRLTOM).

© CRESTA Consortium Page 32 of 73

Semi-­‐Lagrangian	
 coarray	
 optimization	

Developments to the IFS semi-Lagrangian scheme to use Fortran2008 coarrays to
improve scalability by removing the need to perform full halo wide communications. In
addition, computations in the semi-Lagrangian scheme to determine the departure
point and mid-point of the trajectory are overlapped with coarray transfers from
neighbouring tasks.

Optimization	
 of	
 Fourier	
 latitude	
 load-­‐balancing	
 heuristic	

Optimization of the heuristic used to statically load-balance the distribution of variable
length latitudes in grid-space. An optimal distribution of latitudes is required to load-
balance the cost of performing Fourier transforms as IFS transforms data from grid to
Fourier space. Work on this task quickly showed that the best static load-balancing
heuristic at scale was to load-balance the latitude data and ignore the FFT computation
imbalance. To achieve the perfect data load-balance required a rewrite of the trans
library routine sumplatb_mod.F90 which was also tested offline to beyond 1M cores
(assuming 16 threads per task).

Development	
 of	
 a	
 future	
 solver	
 (alternative	
 dynamical	
 core	
 option)	
 for	
 IFS	

Research into a dynamical core for extreme scaling of IFS and a potential replacement
of the spectral method. This research is primarily being performed at ECMWF within
the Numerical Aspects section and in particular with Piotr Smolarkiewicz who is a
recipient of a European Research Council grant (project “PantaRhei”) in the Seventh
Framework Programme (FP7/2012/ERC Grant agreement no. 320375). Recent
developments in this section are presented in [1] and [2]. Within CRESTA, supporting
research has focused on developing a flexible computational environment to provide
extreme scalability with predominantly nearest neighbor communication. Here, spatial
discretization employs bespoke unstructured meshes built about the vertices of the
reduced Gaussian grid employed in IFS as shown in Figure 6.1. Such an arrangement
allows using a domain decomposition identical to IFS and opens avenues to the future
high fidelity comparisons with IFS’ solutions of primitive equations. Furthermore, it
allows for model hybridization where selected elements can be directly exchanged
between the new dynamical core option and IFS, without interpolation. The
development operates on flexible dual meshes with an efficient parallel edge based
data structure and a non-staggered arrangement of flow dependent variables. Tests
have recently progressed to running selected climate benchmarks of global shallow-
water flows. A good resource describing such benchmarks is contained in [4]. It should
be noted that the overall development of an alternative dynamical core is estimated to
take in the order of 10 person years. The CRESTA contribution to this effort is now
complete in respect of the development of a supporting “Atlas” library providing the
flexible framework discussed above. A pre-release version of the Atlas library has been
uploaded to the CRESTA source repository.

Figure 6.1 IFS T63 mesh (nodes are existing T63 grid) and existing EQ_REGIONS partitioning

© CRESTA Consortium Page 33 of 73

Fourier	
 transform	
 coarray	
 optimization	

Optimization to the IFS transform library to overlap the computation of the Fourier
transforms and Fourier space calculations with the associated communications
(TRGTOL/TRLTOG). This was omitted from the D6.1.1 schedule.

IFS	
 CY38R2	
 port	

Port IFS model code version CY38R2 to HECToR. This code cycle became available in
4Q2012 and included support for the TL3999 (5 km) model resolution and fast
Legendre transform. This code version was packaged as a RAPS13 benchmark and
included all the IFS Fortran2008 coarray optimizations implemented in the first year of
the CRESTA project.

Run TL3999 IFS model (5 km global model):
This subtask was completed on TITAN in 2Q2014 where a 5km IFS global model
was run using a Tc1999 cubic grid with half the spectral resolution of the TL3999
linear grid we had originally proposed, as reported in D6.4. It should be noted that
Tc1999 and TL3999 have exactly the same number of grid-points.

Assess coarray optimizations at TL3999:

This subtask was completed in 2Q2014 as above and reported in D6.4.

Radiation	
 in	
 Parallel	
 Scheme	

A scheme whereby the IFS radiation computations were executed in parallel with the
rest of the model was implemented and reported in [3]. This work showed that in
principle it is possible to expose greater parallelism by such an approach, however,
realizing a performance improvement requires computations that are run at every time-
step and are well balanced with the rest of the model in terms of processor resources.

Investigate	
 GPU	
 use	
 in	
 IFS	

Some initial experience of using GPUs was performed as part of the TITAN INCITE14
award to the CRESTA project. Originally we planned to explore intercepting the matrix-
matrix multiplies (DGEMMs) that are called in the Legendre transforms and execute
them on GPUs. What we actually did was to port the whole spectral transform scheme
used in IFS involving Legendre transforms, Fourier transforms and data transpositions
used in an IFS time-step, and cycle this for 100 time-steps. While this represented a
very small fraction of the IFS source it did provide some useful experience with using
OpenACC and the NVIDIA cuFFT library. Figure 6.2 shows a compute cost
performance comparison for a Tc1999 spectral transform test running on 140 TITAN
Nvidia K20X GPUs against 140 Cray XC-30 nodes each with 24 Intel Ivybridge cores.
In Figure 6.2 the TITAN K20X GPU computation cost excludes the associated data
transfers between host and GPU for each computation section. These host/GPU
transfers are included in the K20X GPU MPI communication costs. Table 6.2 shows
the actual costs shown in Figure 6.2, and includes a simple prediction for a XC-30
system (with a minimal number of XC-30 cores and using the Aries MPI interconnect)
with a K20X GPU. The prediction indicates the full cost of the spectral transform test
could be a little faster with a GPU approach, and about a factor of 2 reduction in power
cost. This is based on data that a Cray XC30 24 core Ivybridge node uses 2.4 times
the power of Nvidia K20X GPU.

© CRESTA Consortium Page 34 of 73

Figure 6.2 Tc1999 5 km model spectral transform test compute cost (140 full nodes, 800 fields)

Tc1999 XC-30 TITAN
K20X GPU

XC-30 (Aries)
+GPU Prediction

LTINV_CTL 645.2 162.8 162.8

LTDIR_CTL 638.0 132.0 132.0

FTDIR_CTL 260.2 192.4 192.4

FTINV_CTL 276.6 199.8 199.8

MTOL MPI 547.3 1564.9 547.3

LTOM MPI 222.8 1633.6 222.8

LTOG MPI 502.0 975.8 502.0

GTOL MPI 191.7 998.7 191.7

HOST2GPU - 376.0 376.0

GPU2HOST - 285.0 285.0

Total 3283.8 5860.0 2811.8

Table 6.2 Tc1999 5 km model spectral transform test performance, in milliseconds (140 full nodes,
800 fields)

Investigate	
 graph	
 based	
 (DAG)	
 parallelization	

The use of graph based parallelization in IFS has been investigated. For this work a
small (1100 line) kernel was coded with MPI/OpenMP parallelization, to simulate the
computations and data dependencies in IFS physics and Fourier transforms. OmpSs
tasking model [6] was used for the DAG parallelization and we had many good
exchanges with Prof. Jesus Labarta at the Barcelona Supercomputer Centre. This work
showed promising results for small numbers of threads per task. As the thread count
was increased the MPI/OpenMP version was always faster than the MPI/OmpSs
version. The slower OmpSs performance was identified to be a consequence of

0	

100	

200	

300	

400	

500	

600	

700	

LTINV_CTL	
 LTDIR_CTL	
 FTDIR_CTL	
 FTINV_CTL	

m
se
c	

pe

r	
 V
m
e-­‐
st
ep

	

XC-­‐30	

TITAN	

© CRESTA Consortium Page 35 of 73

having to restrict MPI communications to one thread per OmpSs process as the
available MPI implementation was not thread safe. Both two-sided and one-sided MPI
communications were explored in this work.

6.2 Achievements	
 towards	
 remaining	
 tasks	

There are no remaining tasks.

6.3 Roadmap	
 to	
 exascale	

Task Estimated effort Status

Alternative dynamical core option 10 PY Ongoing

Extreme scaling with DAGs 12 PM (pilot) In planning

DSLs for accelerator/host portability 2 PY (dynamics) In planning

Scalable post processing and
product generation

2 PY In planning

Improved vectorization 1 PY Ongoing

Scalable model startup 3 PM Reported

Scalable grib_api initialization 2-3 PM Reported

Improved memory scaling 3-6 PM In planning

Further work on computation
/communication overlap

2-3 PM In planning

Table 6.3 Roadmap to exascale for IFS

6.3.1 Alternative	
 dynamical	
 core	
 option	

As discussed in Section 6.1, the scaling runs for the Tc3999 2.5 km model have shown
that the communication cost for the spectral transform method in IFS is high. While
overlapping computation and communication shows promising results, this appears to
be less effective at scale as the computation scales better than the communication.
This and the requirement to improve the performance of the IFS dynamics (improved
conservation of mass) are driving the need to provide an alternative dynamical core
option.

6.3.2 Extreme	
 scaling	
 with	
 DAGs	

Based on past experience, the current IFS model is expected to scale well up to a point
where each thread has no less than 100 grid columns. The 2.5 km model has some 80
million grid columns, which implies an upper limit of scalability at around 800K threads,
which is about 100 times less than the likely core count of an exascale system. Rather
than speculate how an even higher resolution model would perform, we need to
continue to explore ideas to improve the scalability of IFS at the petascale. Within
CRESTA we have tested a small IFS kernel to understand how OmpSs tasking model
can be used to overlap computation and communication. Such an approach is
attractive for its simplicity, and moreover OmpSs can also be used to expose greater
parallelism throughout IFS. An example could be to expose the independent matrix-
matrix multiplies (DGEMMs) in each stage of the fast Legendre transform butterfly
scheme. Another example could be to implement a radiation in parallel (or similar
processes) scheme, and leave it to the DAG scheduler to execute ‘radiation’ threads in
parallel with ‘model’ threads. In this approach we are alleviated from the complexity of
managing separate MPI tasks for such processes and balancing their number with
model MPI tasks [3]. To take this further we would propose a pilot port of IFS to use
OmpSs, where the primary aim would be to significantly increase the number of
threads of execution. Maximizing the number of cores (executing threads) per OmpSs
process would have the benefit of reducing the effect of static load imbalance and also
for an IFS model to be more resilient to the effects of system jitter. The use of a thread
safe MPI or use of GASPI/GPI would allow more than one thread to be doing

© CRESTA Consortium Page 36 of 73

communication while other threads are performing computation tasks. In the longer
term we would expect the OmpSs capabilities to be supported by a future OpenMP
standard

6.3.3 DSLs	
 for	
 accelerator/host	
 portability	

The use of Domain Specific Languages (DSLs) will need to be explored to ease the
porting effort to future accelerators (GPU/MIC) while continuing to maintain a single
source version for IFS. Portability is an important requirement for IFS as it is jointly
developed between ECMWF and Meteo France (where it is called ARPEGE) and
derivatives of IFS being used in other weather centres. An example of a DSL used by
MeteoSwiss in their local area COSMO model is described in [5].

6.3.4 Scalable	
 post	
 processing	
 and	
 product	
 generation	

Post processing is the process by which IFS model fields are gathered and written out
in parallel to a file system, and subsequently archived to an archive store. Product
generation takes these model fields and produces products (e.g. global fields or local
area sections) that are disseminated to the ECMWF member states. At the exascale it
will be prohibitively expensive to gather globally distributed fields on a regular basis
(every model hour today), so alternative approaches must be found. A possible
approach could be for a task to move its data to a shared memory location on its node,
and leave it for some other non-time-critical processes to gather and post process on
the fly. Storing raw data at the exascale may not be affordable, and a data reduction
process may need to be used prior to archiving model fields.

6.3.5 Improved	
 vectorization	

Getting the best performance on the latest processor cores requires loops that
vectorize. While this is mainly the responsibility of a compiler, sometimes directives are
required to inform the compiler that particular loops are safe to vectorize. In some
cases routines may require some refactoring to get the best vector performance.

6.3.6 Scalable	
 model	
 startup	

In the CRESTA project we observed that model startup was scaling poorly, and using
Vampir it was easy to see the main reason for this. For the 2.5 km model case startup
took up to 12 minutes at about 200K cores on TITAN. The reason is simply that IFS
uses a single task for reading the initial data (160GB @ 235 MB/s), and although the
reader task sends this data (a multi megabyte logical record at a time using MPI non-
blocking sends) to other tasks for decoding in parallel, the bottleneck remains the
single reader. The proposed solution is to use a number of tasks to read the initial data
in parallel which requires the originator of this data to do corresponding writes in
parallel to separate files. The subsequent scatter operations of fields to the required
task distribution are insignificant in cost, and in particular as this is done only once per
file type (spectral, surface, upper air) at initialization today.

6.3.7 Scalable	
 grib_api	
 initialization	

GRIB is the World Meteorological Organization standard for encoding meteorological
data, and as part of the initialization phase of an IFS model we call a setup routine on
all tasks that expect to use the grib_api interface to encode or decode data, which by
default is all tasks. The problem with this setup routine is that it read tables (files) that
are spread over 39 files which in total are less than 1 MByte. Reading such data from a
single directory from 28K tasks on TITAN took about 10 minutes. A workaround was
found to reduce the number of tasks that need to perform this initialization to about 1K,
and further to hide this in the dead time that tasks are waiting for the initial data reads
to complete. Of course, the correct solution should be for a single task to read the data
and broadcast it to all tasks, taking under a second. This should all be hidden within the
grib_api interface setup.

6.3.8 Improved	
 memory	
 scaling	

As we double the number of tasks, we would expect our memory use to halve, which is
not the case for an IFS model. This needs to be addressed, and to be revisited every

© CRESTA Consortium Page 37 of 73

time a new code cycle of IFS is produced. It would be interesting to see if Allinea
DDT/MAP can shed some light on this memory scaling issue, but we already have
some suspects. One such code area is the semi-Lagrangian scheme where a non-
scaling data structure is the wide halo area surrounding the grid points that a task
owns. The issue with this data structure it is that it is the leading dimension (with fields
as the second dimension). Transposing these dimensions will not reduce the virtual
space, but should reduce the number of real pages used particularly when only a small
part of the wide halo is actually used (as is the case with the CRESTA SL optimization).
The downside of the transpose is that all the interpolation routines would need to be
substantially modified and not just swapping the dimensions of some array
declarations.

6.3.9 Further	
 work	
 on	
 computation/communication	
 overlap	

The current coarray support in Fortran2008 lacks the capability to allocate and
deallocate coarrays for a subset of images. The next Fortran standard is expected to
rectify this deficiency by providing support for a coarray team. With this capability, a
coarray team can be created and a coarray can be allocated within this team, allowing
greater flexibility, and avoiding the overhead and necessary synchronisation of global
coarray operations that exist today. The same functionality already exists with
GASPI/GPI, which can be used to provide a more portable language independent
approach for computation/communication overlap.

6.4 Application	
 performance	
 and	
 scalability	

For an IFS model, it is critical that in operations it can run a 10 day forecast in under
one hour, which equates to 240 forecast days per day. During the CRESTA project
ECMWF have focused on the performance of IFS model resolutions that it would
expect to be running based on past experience, a halving of model resolution every 8
years. A 10 km global model is currently planned to enter operations in 2015 on the
newly installed Cray computers at ECMWF, two XC-30 systems each with 85,000 Intel
Ivybridge cores. This would suggest the next IFS model resolution upgrade would be to
a 5 km model in 2023-24 and thereafter to a 2.5 km model in the early 2030’s. It is
possible that by the early 2030’s ECMWF would have an Exascale system if the
projected growth of “Top500” systems continues on its near Moore’s law trajectory (this
is a big assumption). Having access to HECToR in 2011/12 and TITAN in 2013/14 has
allowed ECMWF to run the 10 km, 5 km and 2.5 km IFS models at scale for short 3 or
6 forecast hour periods, and measure performance as shown below.

6.4.1 IFS	
 10	
 km	
 global	
 model	

Figure 6.3 shows how scaling has improved over the CRESTA project for the 10 km
IFS global model. The final OCT-14 scaling improvement was obtained by simply
reducing the frequency of producing global grid point and spectral norms. These norms
have no effect on model results and are only useful to ECMWF scientists during model
development. While these norms are coded using an efficient 2D parallelization
scheme, these runs are a clear indicator that their use has a negative effect at scale.
Figure 6.4 shows the performance gains that are due to the coarray optimizations. As
the operational requirement is 240 forecast days per day, it can be seen that there is
no scaling issue at the core count (8K cores) to achieve this performance, and the
improvement due to the coarray optimizations is about 8 percent (on TITAN).

© CRESTA Consortium Page 38 of 73

Figure 6.3 10 km / L137 global IFS forecast model performance, RAPS12 (CY37R3, on HECToR),
RAPS13 (CY38R2, on TITAN)

Figure 6.4 10 km / L137 global IFS forecast model performance, showing performance
improvement due to coarray optimizations

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	
 20	
 40	
 60	
 80	
 100	
 120	

Fo
re
ca
st
	
 D
ay
s	
 /

	
 D
ay
	

Number	
 of	
 Cores	
 (thousands)	

TITAN	
 RAPS13	
 OCT-­‐14	

Cubic	
 COAR=T	

TITAN	
 RAPS13	
 FEB-­‐14	

Cubic	
 COAR=T	

TITAN	
 RAPS13	
 OCT-­‐13	

Linear	
 COAR=T	

HECToR	
 RAPS12	
 2012	

Linear	
 COAR=T	

HECToR	
 RAPS12	
 2011	

Original	
 Linear	

0	

200	

400	

600	

800	

1000	

1200	

1400	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Fo
re
ca
st
	
 D
ay
s	
 /

	
 D
ay
	

Number	
 of	
 Cores	
 (thousands)	

COARRAYS=T	

COARRAYS=F	

© CRESTA Consortium Page 39 of 73

6.4.2 IFS	
 5	
 km	
 global	
 model	

Figure 6.5 shows the performance of a 5 km model running on TITAN and ECMWF’s
Cray XC-30. It is clear from the detailed timers in IFS that the XC-30 is both faster per
core (Intel Ivybridge versus AMD Opteron) and has improved communications
performance over TITAN (Cray Aries versus Cray Gemini interconnect). Yes, the XC-
30 would meet the 240 forecast days per day operational requirement, but the 25K
cores needed would be too high a fraction of the total 85K cores (on one cluster) to run
the rest of the operational suite (ensemble prediction system, ensemble data
assimilation) and other workloads.

Figure 6.5 5 km / L137 global IFS forecast model performance

The figure also shows the improvement in performance on TITAN at scale by reducing
the frequency of spectral and global norms (the dashed lines - labelled OCT-14).

So which of the coarray optimizations had the largest effect on performance?

Figure 6.6 shows how the performance attributed to the coarray optimizations are
distributed as a percentage of their total. By far, the most improvement came from the
semi-Lagrangian optimization at about 50%, then the Legendre optimizations, and
finally the Fourier optimizations.

0	

100	

200	

300	

400	

500	

600	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	
 220	

Fo
re
ca
st
	
 D
ay
s	
 /

	
 D
ay
	

#	
 Cores	
 (thousands)	

CRAY	
 XC-­‐30	
 COARRAYS=F	

TITAN	
 COARRAYS=T	
 	
 OCT-­‐14	

TITAN	
 COARRAYS=T	

TITAN	
 COARRAYS=F	
 OCT-­‐14	

TITAN	
 COARRAYS=F	

© CRESTA Consortium Page 40 of 73

Figure 6.6 Coarray optimization distribution for Tc1999 on Titan. Left picture: using 49,152 cores,
Right picture: using 163,840 cores

6.4.3 IFS	
 2.5	
 km	
 global	
 model	

Figure 6.7 shows the performance of a 2.5 km model running on TITAN and ECMWF’s
Cray XC-30.

Figure 6.7 2.5 km / L137 global IFS forecast model performance

The latest runs (labeled NOV-14) show a marked improvement in performance at scale
by removing spectral norm and grid-point norm computations and communications,
except for the final time-step needed for the correctness check. These norms are
purely diagnostic and have no effect on model results. While these norms are useful
during the development process, they serve no purpose for operational runs.
Unfortunately, the NOV-14 model runs at 229K cores both encountered a huge-page
problem on TITAN, which has been reported to support staff at ORNL. It is suspected
that this related to memory fragmentation and reduced huge-pages on some nodes.
Note that none of these runs are getting close to the desired 240 forecast days per day.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

SL	
 LTINV	
 LTDIR	
 FTDIR	
 FTINV	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

SL	
 LTINV	
 LTDIR	
 FTDIR	
 FTINV	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	
 220	
 240	

Fo
re
ca
st
	
 D
ay
s	
 /

	
 D
ay
	

#	
 Cores	
 (thousands)	

CRAY	
 XC-­‐30	
 COARRAYS=F	

TITAN	
 COARRAYS=T	
 NOV-­‐14	

TITAN	
 COARRAYS=T	

TITAN	
 COARRAYS=F	
 NOV-­‐14	

TITAN	
 COARRAYS=F	

© CRESTA Consortium Page 41 of 73

6.4.4 Efficient	
 weak	
 scalability,	
 IFS	
 10	
 km	
 global	
 model	

Figure 6.8 shows the weak scaling of an IFS model on a Cray XC-30 system. The data
point labeled 240 is for a 10 km model (144 nodes), 218 a 5 km model (821 nodes) and
177 a 2.5 km model (7122 nodes). As the ECMWF Cray XC-30 system has a
maximum of 3500 nodes, the 2.5 km performance at 7122 nodes was extrapolated.
The number of nodes used for the 3 model cases was simply scaled by the number of
model grid-points and the time-step used, and does not include any non-linear factors
in the spectral transform method or the radiation grid used.

Figure 6.8 Weak scaling of IFS model on a Cray XC-30

It is clear from the weak scaling that an IFS model requires continued scalability
improvements to get closer to the ideal weak scaling of a horizontal line.

6.4.5 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	

Table 6.4 shows the performance improvements realized in the CRESTA project for a
10 km global 137 level hydrostatic IFS model case using 45,056 cores on HECToR and
TITAN (both use AMD Interlagos cores). The performance measure is Forecast Days
per Day (FD/D), where the operational requirement for a 10 day deterministic forecast
is one hour or 240 FD/D. This model case is expected to enter operations at ECMWF
in 3Q2015.

Code version

Compiler
Release/System

10 km model
FD/D

Relative
Performance

RAPS12 (CY37R3) base,
linear grid, TSTEP=450s

8.0.3

HECToR
277 1.00

MPI optimizations to
wave model

8.0.3

HECToR
356 1.29

new compiler release,
improved compiler opts

8.0.6

HECToR
419 1.51

All coarray optimizations
(LT, FT, SL)

8.0.6

HECToR
485 1.75

240	

218	

177	

0	

50	

100	

150	

200	

250	

300	

64	
 256	
 1024	
 4096	

fo
re
ca
st
	
 d
ay
s	
 p

er
	
 d
ay
	

Cray	
 XC-­‐30	
 Nodes	

© CRESTA Consortium Page 42 of 73

RAPS13 (CY38R2) base
8.1.5

TITAN
500 est. 1.80 est.

Using cubic grid (still
10km global grid),
TSTEP=600s

8.2.2

TITAN
880 est. 3.17 est.

Final runs OCT-14 with
reduced norms

8.3.0

TITAN
925 3.34

Table 6.4 Evolution of IFS 10 km L137 model performance using 45,056 cores on HECToR and
TITAN

It is clear that IFS model scalability has improved substantially during the CRESTA
project, and has shown encouraging scalability at the petascale. However, getting an
IFS model to perform well at the exascale will require many further developments as
outlined in the roadmap in section 6.3. What is clearly also required is ongoing
hardware developments to keep power costs to acceptable levels and a software stack
that provides for performance, portability and maintainability of large applications such
as IFS.

6.5 References	

[1] Smolarkiewicz, Piotr K.; Kühnlein, Christian; Wedi, Nils P. “A consistent

framework for discrete integrations of soundproof and compressible PDEs of
atmospheric dynamics.” J. Comput. PhysicsJ. Comput. Physics 263, 185-
205(2014) doi: /10.1016/j.jcp.2014.01.031

[2] Marcin J. Kurowski, Wojciech W. Grabowski, and Piotr K. Smolarkiewicz,
“Anelastic and Compressible Simulation of Moist Deep Convection.” J. Atmos.
Sci., 71, 3767–3787. 2014, doi: /10.1175/JAS-D-14-0017.1

[3] Mozdzynski, G., and J.-J. Morcrette, Reorganization of the radiation transfer
calculations in the ECMWF IFS. ECMWF Technical Memorandum No.721, April
2014.http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/701-
800/tm721.pdf

[4] Christiane Jablonowski , “Idealized Dynamical Core Test Cases for Weather
and Climate Models”,
http://www-personal.umich.edu/~cjablono/dycore_test_suite.html

[5] Gysi, Tobias; Fuhrer, Oliver; Osuna, Carlos; Cumming, Benjamin; Schulthess,
Thomas, “STELLA: A domain-specific embedded language for stencil codes on
structured grids”, EGU General Assembly 2014, 2014EGUGA..16.8464G.

[6] OmpSs home page, https://pm.bsc.es/ompss.

© CRESTA Consortium Page 43 of 73

7 Nek5000	

Nek5000 [7] is an open-source code for the simulation of incompressible flow in
complex geometries. The discretization is based on the spectral-element method
(SEM) which combines the higher-order accuracy from spectral methods with the
geometric flexibility of finite element methods.

Nek5000 is written in mixed Fortran77/C and designed to employ fully large-scale
parallelism. The code has a long history of HPC development. Recently the large-
scale simulations were successful performed on the Cray XE6 system at PDC, KTH
with 32,768 cores [8] and on the IBM BG/P Eugene with 262144 cores [9]. An overview
of the capabilities and recent developments within the Nek5000 community is given in
[10].

7.1 Summary	
 of	
 the	
 previous	
 roadmaps	

Task Scheduled date Status

Investigate existing code
architecture

M18 Completed

Implement error estimator
and initial refinement code

M24 Completed

Adaptive refinement
development

M18 Ongoing

Implement load balancing
using existing Nek5000
tool suite

M30 Ongoing

Undertake test and
development on large
scale applications

M30 Completed

OpenACC acceleration of
Nek5000

M27 Completed

Table 7.1 Summary of the previous roadmaps for Nek5000

Investigate	
 existing	
 code	
 architecture	

The aim of this task is to gain a fundamental understanding of most aspects of the
implementation of NEK5000 with a special attention to the large-scale simulation of
incompressible flow.

Implement	
 error	
 estimator	
 and	
 initial	
 refinement	
 code	

Adaptive Mesh Refinement (AMR) requires identification of the regions in the flow with
significant error. Error estimators based on the expansion of the solution in the basis of
Legendre functions were successfully implemented in NEK5000.

Adaptive	
 refinement	
 development	

AMR gives possibility to increase the accuracy of numerical simulations with minimal
computational cost. There are two ways of introducing AMR: adaptive p-refinement, i.e.
increasing polynomial order in individual elements, and adaptive h-refinement, i.e.
splitting the element into smaller one. We have discarded p-refinement in favor of h-
refinement, due to its flexibility. To manage variable grid structure we used p4est [1]
library. We have integrated NEK5000 with p4est library adding all the tools necessary
for mesh regeneration and redistribution.

Implement	
 load	
 balancing	
 using	
 existing	
 Nek5000	
 tool	
 suite	

NEK5000 obtains full scaling using static load balancing based on initial element
distribution. After introducing AMR the load balancing become an important issue, as
the grid structure changes during the simulation. We implemented dynamical grid
partitioning using the ParMetis [2] library.

© CRESTA Consortium Page 44 of 73

Undertake	
 test	
 and	
 development	
 on	
 large	
 scale	
 applications	

By using the developed software environments we conducted large-scale model
simulations of the heat transfer problem.

OpenACC	
 acceleration	
 of	
 Nek5000	

The objective of this task was to enable the use of Nek5000 on a massively parallel
hybrid GPU/CPU system. To this end, we first implemented an OpenACC version
NekBone benchmark, which is a simplified version of Nek5000. The knowledge gained
from the Nekbone implementation was used to perform the OpenACC acceleration of
the full Nek5000 code. In addition, the task was used to assess the viability of hybrid
exascale simulations and the status and the performance of the current OpenACC
compilers.

7.2 Achievements	
 towards	
 remaining	
 tasks	

Task Achievement

Adaptive refinement
development

Adaptation of the pressure preconditioners for AMR

Table 7.2 Achievements towards remaining tasks from the previous roadmaps for Nek5000

Adaptive	
 refinement	
 development	

We have implemented h-type refinement into NEK5000 using p4est library as grid
manager. It allows us to solve diffusion equation with time independent velocity field on
the dynamically changing grid using adopted for AMR conjugated gradient method.
However, integration of full incompressible Navier-Stokes solver in Nek5000 with AMR
requires significant modification of the pressure solver which is the most
communication extensive part of the code. To assure fluid incompressibility standard
methods like conjugated gradient method would require number of iteration
proportional to the grid point number to converge. This limits their usage to the
relatively small problems only. To reduce the number of iterations required, specialized
preconditioners are needed. However, their adaptation to AMR requires additional
algorithm development, which we will not be able to finish within CRESTA.

7.3 Roadmap	
 to	
 exascale	

Task Estimated effort Status

Correcting load balancing
using existing Nek5000
tool suite

3 PM Ongoing

Improving multi-GPU
communication with
OpenACC

6 PM In planning

Table 7.3 Roadmap to exascale for Nek5000

7.3.1 Correcting	
 load	
 balancing	
 using	
 existing	
 Nek5000	
 tool	
 suite.	

NEK5000 obtains full scaling using static load balancing based on initial element
distribution. After introducing AMR the dynamic load balancing become an important
issue, as the grid structure changes during the simulation. In cooperation with WP5 we
implemented dynamic grid partitioner using standard libraries for graph bisection
adopting partitioning from scratch strategy. This strategy allows for highest possible
quality of the mesh distribution, but does not take into account partitioning and
communication costs. Our tests performed with ParMetis show the partitioning time to
grow quickly with number of processors and to be dominant in the runs with less than
10 elements per core. That is why we investigate possible improvements testing
different repartitioning strategies. This work is performed in cooperation with WP5.

7.3.2 Improving	
 multi-­‐GPU	
 communication	
 with	
 OpenACC	

© CRESTA Consortium Page 45 of 73

With a multi-GPU setup, the gather-scatter operator and the associated MPI
communication can be improved. In the CRESTA project, the original gather-scatter
operator was split into two parts. First a local gather on the GPU is performed, followed
by the transfer of the boundary values at the interfaces of the domain. Then the
boundary values need to be copied to a local CPU memory, communicated via network
to the memory of another CPU, and then transferred back a memory of a remote GPU
to finally carry out a local scatter on the GPU. This approach allows a considerable
reduction in the amount of data to be moved from the GPU and CPU memory and vice
versa.

In spite of the reduction in the amount of data transferred, the additional transfers
between the host and accelerator have an effect on the achievable performance. We
estimate that techniques such as overlapping of GPU kernels with host/accelerator
memory transfers or using direct communication between accelerators via RDMA
would increase the performance of the OpenACC version of Nek5000. This is will be
part of future research.

7.4 Application	
 performance	
 and	
 scalability	

The original (conformal meshes; no accelerator support) version of Nek5000 scales up
to 106 processes with parallel efficiency 0.6 on ALCF BG/Q Mira (see Figure 7.1). This
good scaling is achieved by proper construction of the global communication and code
simplicity.

Figure 7.1 Strong scaling of original Nek5000

There are two main tasks related to Nek5000 development in CRESTA: code
adaptation for GPGPU accelerators with OpenACC and the implementation of h-type
Adaptive Mesh Refinement (AMR). Both of these tasks require significant modification
of the global communication pattern that may have a negative impact on the strong
scaling of the code.

To check the effect of the modifications, we test the modified code on different model
problems and run exemplar scientific simulations for GPGPU and AMR scalability
tests.

© CRESTA Consortium Page 46 of 73

7.4.1 GPGPU:	
 evaluation	
 of	
 application	
 performance	
 and	
 scalability	

The Titan supercomputer has been used to study the performance of OpenACC
accelerated Nek5000 on GPU systems. Titan is a Cray XK7 supercomputer,
containing 18,688 AMD Opteron 6274 16-core CPUs and 18,688 Nvidia Tesla K20X
GPUs.

GPGPU:	
 Model	
 problem	

NekBone is configured with the basic structure and user interface of the extensive
Nek5000 software. NekBone exposes the principal computational kernel to reveal the
essential elements of the algorithmic-architectural coupling that is pertinent to
Nek5000, (More information about NekBone can be found in [11].

Figure 7.2 The performance of NekBone on a single GPU varying the number of elements (E) and
the order of the polynomial (N). By varying these two parameters the changed computational
workload on the GPU is changed with which affects the computational performance.

Consequently, the results from investigating the performance and profiling for NekBone
can be directly applied to Nek5000. NekBone solves a standard Poisson equation
using the spectral element method with an iterative conjugate gradient solver. The
computational performance critically depends on the computation workload on the
GPU. The larger the number calculations that are completed on the GPU, the higher
the performance is. This is clear from Figure 7.2 which shows the performance of
NekBone on a single GPU varying the number of elements (E) and the spectral order
(N). By increasing these two values, we increase the trip-count of the four nested loops
in the matrix-matrix multiplications. Better performance is achieved with a high number
of elements and a high order polynomial.

Different compilers and versions also affect the performance of NekBone. Figure 7.3
shows the performance in Gflops on a single GPU with the Cray CCE OpenACC, PGI
OpenACC and PGI CUDA Fortran compilers, respectively. The best performance (of
around 75 Gflops) was obtained with the latest version of PGI V14.10.0. The number of
elements used in these test was 1024.

0	

10	

20	

30	

40	

50	

60	

70	

80	

32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	

Pe
rf
or
m
an

ce
	
 (G

Fl
op

s)
	

E	

N=20	

N=18	

N=16	

N=14	

N=12	

N=10	

N=8	

© CRESTA Consortium Page 47 of 73

Figure 7.3 The performance of NekBone on a single GPU with different compilers. 1024 elements
were used. Cray CCE: Cray CCE v8.4.0 compiler; PGI: PGI v14.9.0 compiler; PGI_CUDA: PGI v14.9.0
with CUDA Fortran.

GPGPU:	
 Exemplar	
 scientific	
 simulation	

The study of turbulent pipe flows is closely related to finding the relationship between
the average flow velocities and the friction coefficient. The flow of fluid in pipes with
circular cross-section is frequently encountered in a variety of environmental, technical
and even biological applications. Typical examples of pipe flows can be found in urban
drainage systems, the transport of natural gas or oil in the energy sector (i.e. pipelines)
or the flow of blood in veins and arteries. Simulations can help us to find methods to
solve problems related to pipe flow, such as drag reduction. Thus, the understanding of
flow physics in pipes has a direct and significant substantial impact on everyday life [6].

Figure 7.4 Mesh geometry (left) and the instantaneous axial vorticity, displayed for Re=190000
(right)

In Nek5000, Direct numerical simulation (DNS) is employed to numerically solve the
Navier-Stokes equations. In order to capture all the features of an eddy in the flow field,
the computational domain should be larger than the structures in the flow to resolve the
smallest scale in the turbulent eddies. Consequently, the computational cost of
performing a DNS including all scales grows by Re3, where Re is the Reynolds
number. The highest Reynolds numbers for a pipe flow can reach 5.3x105. With such a
high computational costs, only a substantial increase in the available computing power
makes it possible to fully resolve numerical solutions of a truly turbulent flow.

0	

10	

20	

30	

40	

50	

60	

70	

80	

n=8	
 n=12	
 n=16	

Performance	
 (Gflops)	

Cray	
 CCE	

PGI	

PGI_CUDA	

© CRESTA Consortium Page 48 of 73

Figure 7.5 The execution time per iteration with different orders of polynomial using the CG linear
solver and Schwarz preconditioner. 1024 elements were used on a single GPU. OpenACC: single
GPU; MPI: single node with 16 cores.

A Nek5000 simulation of the flow in a straight pipe with 400 elements was used to test
the performance of the Nek5000 code with OpenACC acceleration. The execution time
per iteration with different orders of polynomial using the CG linear solver and Schwarz
preconditioner are compared in Figure 7.5. The speed-up achieved using OpenACC
directives is 1.74 with a16th order polynomial on a single GPU compared to single
node with 16 CPU cores.

7.4.2 AMR:	
 evaluation	
 of	
 application	
 performance	
 and	
 scalability	

All test runs on AMR were performed on a Cray XE6 system Lindgren at KTH. Lindgren
computer has a total of 1516 nodes with dual AMD Opteron 12-core 2.1 GHz “Magny-
Cours” processors (36384 cores in total).

AMR:	
 Model	
 problem	

Our model problem is based on the convected-cone example introduced by Gottlieb
and Orszag [3], which is the passive scalar transport problem. In the original problem a
unit-height cone with a base-radius of 0.1 centered at (x,y)=(0, 0.25) is subjected to
plane rotation according to time independent velocity field v=(y-0.5,0.5-x). We adopted
this example to 3-dimensional simulations evolving a sphere-shape (strong scaling) or
cylinder-shape (weak scaling) cone according to energy equation in Nek5000. Spectral
error estimator identifies discontinuities in the initial condition increasing grid resolution
at the edge and the center of the cone (see Figure 7.6).

0	

5	

10	

15	

20	

25	

N=12	
 N=14	
 N=16	

Ti
m
e(
s)
/s
te
p	

OpenACC	
 MPI	

© CRESTA Consortium Page 49 of 73

Figure 7.6 Two–dimensional cut through the domain of the convected-cone problem showing the
grid structure (black squares) and the passive scalar profile (color scale). Each element (3D cube
depicted by a square) corresponds to the mesh of 12X12X12 grid points.

In our runs we used 6 and 5 refinement levels for strong (sphere) and weak (cylinder)
scaling tests, respectively. It corresponds to 33864 elements for strong scaling tests
and 117192 elements for weak scaling test at 2048 cores. Scaling tests were
performed for number of cores being power of 2 ranging from 2048 up to 32768. The
global element number in the weak scaling tests ranges from 117192 up to 1875072. In
all the runs the polynomial order was set to 11 and the graph bisection was performed
by ParMetis. Note that the global number of elements in some of the strong scaling
tests is not constant for different processor numbers due to the fact, that p4est
performs de-refinement of the 8 children elements into the single parent element only if
all the children elements reside on a single process. That is why the global number of
elements slowly grows with the number of processors and the run performed on 32768
cores has in average about 6% elements more than the run performed on 2048 cores.

In all the tests performed we follow the advected features in the flow (the cone). This
requires continuous adjustment of the mesh and does not converge to any time
independent grid structure. Such a strategy is not applicable to stability calculations,
where instead of individual flow structures the sensitive regions in the flow have to be
identified and resolved. On the other hand, following the advected features of the flow
allows us to increase the frequency of grid modification and to study possible
limitations of the method. In presented runs with grid adaptation turned on the mesh
was regenerated every 50 Nek5000 steps.

In all tests we study performance of different tools used in simulations focusing on two
major stages: non-conformal Nek5000 calculation (SOLVER) and mesh adaptation
phase (AMR). AMR phase consists of number of operations like identification of
regions for refinement/de-refinement (ESTIMATOR), generation of the new grid
performed by p4est (P4EST), mesh partitioning performed by ParMetis (PARTITION),
sorting and transferring elements between processors (TRANSFER) and resetting
Nek5000 solver on the new mesh (RESTART). The last operation consists of e.g.
generation of new global communicators for direct stiffness summations, which require
global ordering of the grid points done by p4est. Many of these operations are

© CRESTA Consortium Page 50 of 73

communication extensive and do not perform enough calculations to overlap
communication. We will discuss performance all those operations in following sections.

AMR:	
 Exemplar	
 scientific	
 simulation	

We do not present here any of the scientific simulations due to the lack of proper,
adopted for AMR pressure preconditioner, which limits the size of studied problem and
does not allow to perform scaling tests. It is related to the fact that integration of full
incompressible Navier-Stokes solver in Nek5000 with AMR requires significant
modification of the pressure solver, which is the most communication extensive part of
the code. To assure fluid incompressibility, standard methods such as conjugate
gradient method would require the number of iterations proportional to the grid point
number in order to converge. This limits their usage to relatively small problems only.
To reduce CG iterations, specialized preconditioners are being used. However, their
adaptation to the AMR framework requires additional algorithm development, which we
will are unable to finish within CRESTA.

7.4.3 Efficient	
 strong	
 scalability,	
 model	
 problem	

GPGPU:	
 Model	
 problem	

For the test on Titan, 16th-order polynomials were used for a total of 8.59 ∙ 10! points.

Figure 7.7 The strong scalability of NekBone. Total 2,097,152 elements and 16th order of
polynomial are used.

Figure 7.7 shows the NekBone strong scaling performance, measured in Tflops, with
up to 16,384 GPUs as a solid red color, while the black dashed line represents the
ideal strong scaling. The parallel efficiency with 4096 GPUs was 91.9% compared
when using 1024 GPUs. However the efficiency reduced significantly when going from
using 4096 to 16,384 GPUs. In order to get better performance we should use as many
elements per node as we can fit into GPU memory (6GB for the Kepler K20X card).

AMR:	
 Model	
 problem	

The starting point of our discussion is performance test of the non-conformal version of
Nek5000 (SOLVER) developed within CRESTA without taking into account mesh
adaptivity. The major differences between non-conformal and conformal (original one)
Nek5000 versions are the direct stiffness summation operator (related to global
communication), which is more complicated for the non-conformal version, and the
initial mesh partitioning, which in non-conformal case is performed by ParMetis. In the
conformal version grid partitioning is performed by Nek5000 native software and the
element imbalance cannot exceed 1. On the other hand element imbalance in ParMetis
is controlled by the imbalance tolerance parameter ε, which value closer to 1.0 should
give better balancing of the partitions.

© CRESTA Consortium Page 51 of 73

Figure 7.8 Strong scaling of non-conformal Nek5000 without mesh adaptivity for the imbalance
tolerance ε equal 1.05 and 1.01. Blue line gives ideal scaling.

Figure 7.9 Elements imbalance as a function of processor number for the imbalance tolerance ε
equal 1.05 and 1.01.

To check performance of the non-conformal Nek5000 version we executed number of
simulations with constant, non-conformal grid structure (grid adaptivity turned off) and
varying ε. In this case the mesh is generated and redistributed only once during
initialization phase. The recommended value of ε is 1.05 and we did number of runs
with ε equal 1.05, 1.01 and 1.001 founding no difference between results of ε=1.01 and
ε=1.001 simulations.

© CRESTA Consortium Page 52 of 73

The average time per time step and the element imbalance in the simulations is
presented in Figure 7.8 and Figure 7.9. Unlike the native Nek5000 grid partitioner,
ParMetis can give significant element imbalance, which for some cases is comparable
with or even bigger than the minimum number of elements per core. For example in the
case of the number of processors NP=16384 and ε=1.01 the element imbalance is
equal 22 and number of elements per core ranges from 12 up to 34. This has strong
impact on the code scalability reducing parallel efficiency as can be seen in Figure 7.8.
Note that the lower value of ε does not always guarantee more balanced partitions. The
lowest element imbalance was achieved for NP=32768 independently on value of ε
giving parallel efficiency equal 0.55. This parallel efficiency was reached for about
15000 grid points per processor (corresponding to about 10 elements) setting minimal
amount of work necessary for reasonable scaling.

Next investigated quantity is the time necessary to perform grid partitioning presented
in Figure 7.11. Most of this time is spent in ParMetis and is dependent on the strong
scalability of this library. Figure 7.10 shows slow increase of the partitioning time with
the number of processors NP for NP≤16384 and next rapid jump (about 40 times) for
NP=32768. As the number of partitions grows with the number of processors, the slow
increase of the partitioning time is expected, however we are unable to explain the size
of the jump for biggest NP. It is certainly related to decreasing number of graph nodes
per core with growing NP and sets minimal amount of elements per core for ParMetis
to achieve reasonable scaling. In our case this limit is about 20 elements per core,
which is higher than the limit for the solver itself and shows Nek5000 solver to scale
better than ParMetis library for studied problems.

Figure 7.10 Partitioning time as a function of processors number.

Limited scalability of ParMetis is even more prominent in the tests with mesh adaptivity
turned on, as the mesh partitioning is performed frequently. It is clearly visible in Figure
7.11 presenting the percentage of time spent in Nek5000 solver (SOLVER) and grid
adaptation stage (AMR), and in Figure 7.12 showing average time per timestep
including both SOLVER and AMR stages. The percentage of time spent in AMR stage
is constantly growing with growing CPU number and for NP=32768 reaches about 90%
causing significant increase of the average time per timestep.

© CRESTA Consortium Page 53 of 73

Figure 7.11 Percentage of runtime spent in fluid evolution stage (SOLVER) and mesh adaptation
(AMR).

Figure 7.12 Strong scaling of non-conformal Nek5000 with mesh adaptivity for the imbalance
tolerance ε=1.01. Green line gives ideal scaling.

© CRESTA Consortium Page 54 of 73

Figure 7.13 Percentage of runtime spent in different stages of mesh adaptation phase as a function
of core number.

Figure 7.14 Execution time (for single mesh adaptivity cycle) of different tools in AMR stage
compared with average time per timestep of Nek5000 solver. In this plot SOLVER does average
over the Nek5000 solver stage only and does not include AMR phase.

More insight into the performance of different tools used in the AMR stage give Figure
7.13 showing percentage of runtime spent in different stages of mesh adaptation
phase, and Figure 7.14 presenting the execution time of different AMR tools during
single mesh adaptivity cycle. They are compared with the average time per timestep of
non-conformal Nek5000 solver. Unlike in Figure 7.12, this averaging procedure does
not include AMR phase showing the strong scaling of the solver alone. These plots
show the error estimator stage (ESTIMATOR) to be negligible, as all the calculations
are performed locally. More computationally expensive stages are reset of the
Nek5000 solver on the new mesh (RESTART) and sorting/transferring elements
between processors (TRANSFER). However, those two phases scale only slightly
worse than Nek5000 solver (SOLVER). There is some parallel efficiency decrease in
the case of RESTART at NP=32768 caused by communication intensive global
numbering of the grid points (performed by p4est) and generation of the new global
communicator. The most important limitation is here scalability of used libraries: p4est

© CRESTA Consortium Page 55 of 73

responsible for mesh regeneration (P4EST) and ParMetis responsible for mesh
partitioning (PARTITION). Both perform communication intensive operations (like grid
balancing in p4est) and set limit for minimum load, which we estimate to 20 elements
per core. However, this value can strongly depend on the polynomial order used for the
spectral element method.

Figure 7.15 Parallel efficiency of the simulations without (ε=1.05; ε=1.01) and with (AMR) grid
adaptation for non-conformal version of Nek5000.

We conclude this section with Figure 7.15 presenting parallel efficiency plot of all
discussed simulations. It shows comparable parallel efficiency of all the runs with the
number of elements per core bigger than 20, and accents importance of the proper
balancing of the mesh partitions.

7.4.4 Efficient	
 weak	
 scalability,	
 model	
 problem	

GPGPU:	
 Model	
 problem	

For the test on Titan, 1024 elements per node and 16th-order polynomials were used
for a total of 4,194,304 points per node. Figure 7.16 shows the NekBone weak scaling
performance, measured in TFlops, with up to 16,384 GPUs in red color, while the black
dashed line represents the ideal weak scaling. The parallel efficiency on 16,384 GPUs
was 52.8% compared with single GPU and the maximum performance is 609.8 Tflops.

Figure 7.16 Weak scalability results for Nekbone benchmark on the Titan supercomputer with up to
16,384 GPUs (red line) and ideal case (black dashed line).

1 1024 2048 4096 8192 16384
0

200

400

600

800

1000

1200

Number of GPUs

TF
lo

ps

Eff.=74.8%

73.4%

66.7%

59.4%

52.8%

Titan
Ideal

© CRESTA Consortium Page 56 of 73

Comparing the GPU version with the pure CPU version of the NekBone code, a speed-
up of 2.4-4.0 times can be obtained, see Figure 7.17.

Figure 7.17 Weak scalability results for Nekbone benchmark on the Titan supercomputer with up to
16,384 GPUs compared with full nodes of a pure CPU version.

AMR:	
 Model	
 problem	

Presenting weak scalability test we compare, like in the strong scalability case,
performance of the non-conformal Nek5000 version without and with grid adaptivity. In
the first case simulations are performed with a constant, non-conformal grid partitioned
only once during initialization phase. In the second case grid is recreated every 50
solver steps. In all executed runs the grid partitioning is performed by ParMetis and the
imbalance tolerance parameter ε is set to 1.01. Adopted test case gives at least 50
elements per core, what allows us to avoid discussed in the previous section problems
with limited strong scalability of ParMetis.

Figure 7.18 Weak scalability of non-conformal Nek5000 without (ε=1.01) and with (AMR) mesh
adaptivity. In the AMR case the execution time of the grid adaptation phase is included in the
averaging.

Figure 7.18 presents the average time per timestep for the simulations with grid
adaptivity turned off (red symbols) and on (green symbols). The element imbalance in
both cases is usually smaller than in the strong scalability tests ranging from 4 to 12
elements, but is considerably bigger than element imbalance achieved by native static
partitioner of Nek5000. Nek5000 solver itself shows very good parallel performance

1 1024 2048 4096 8192 16384
0

100

200

300

400

500

600

700

Number of Nodes/GPUs

TF
lo

ps

3.93x

4.25x

2.95x

2.40x
OpenACC/MPI
MPI

© CRESTA Consortium Page 57 of 73

reaching parallel efficiency of 0.75 for NP=32768 and the global element number equal
1875072.

Figure 7.19 24 Execution time for a single grid partitioning as a function of processor number for
simulations without (ε=1.01) and with (AMR) mesh adaptivity. In the AMR case plotted time is an
average over 80 grid adaptation cycles.

Figure 7.20 Percentage of runtime spent in fluid evolution stage (SOLVER) and mesh adaptation
(AMR) for the simulation with grid adaptivity.

© CRESTA Consortium Page 58 of 73

Figure 7.21 Execution time (for single mesh adaptivity cycle) of different tools in AMR stage
compared with average time per timestep of Nek5000 solver. In this plot SOLVER does average
over the Nek5000 solver stage only and does not include AMR phase.

Figure 7.22 Percentage of runtime spent in different stages of mesh adaptation phase as a function
of core number.

When the grid adaptivity is included, the parallel efficiency drops to 0.57 showing
considerable communication overhead in mesh regeneration stage. It is related to
increasing time necessary to perform grid partitioning by ParMetis (see Figure 7.21)
however even for the biggest simulation the mesh adaptation phase does not take
more than 30% of the runtime (see Figure 7.20). However, Figure 7.21 and Figure 7.22
show grid partitioning to be most costly operation for NP≥4096. Like in the strong
scaling case the error estimator (ESTIMATOR) is insignificant for our performance
tests. In the similar way we find non-conformal Nek5000 solver to be the most
efficiently parallelized component of our code, and the sorting/transfer tool
(TRANSFER) scaling reasonably well. There is visible decrease in parallel
performance of the Nek5000 restart tool (RESTART) due to communication intensive
global numbering of the grid points (performed by p4est) and generation of the new
global communicator. On the other hand the scalability of ParMetis is the most
important limitation of our implementation requiring some improvements.

© CRESTA Consortium Page 59 of 73

We conclude this section with Figure 7.23 presenting parallel efficiency plot of all
discussed simulations.

Figure 7.23 Parallel efficiency of the simulations without (ε=1.01) and with (AMR) grid adaptation
for non-conformal version of Nek5000.

7.4.5 Efficient	
 strong	
 scalability,	
 exemplar	
 scientific	
 simulation	

GPGPU	

From Figure 7.2 we know that the performance of kernels (matrix-matrix multiplication)
highly depends on the order of polynomial (N) and number of elements (E). Larger
values of N give better performance. This may be that the amount of work per thread
(which is proportional to N) is greater, which either leads to better kernel efficiency or
assists to offset the latency cost of launching kernels. Also the MPI communication
overlaps the less workload of GPUs. Consequently, the degradation performance with
increase of the number of GPUs for the strong scalability is expected. The performance
of OpenACC version is quite different from the original MPI version where parallel
efficiency 0.6 has been measured for strong scalability between 32768 and 1048576
MPI ranks, see Figure 7.1.
A Nek5000 simulation of the flow in a straight pipe with 1.2M elements was used to test the
performance of the Nek5000 code with OpenACC simulation. The execution time per iteration with
different orders of polynomial using the GMRES linear solver and Schwarz preconditioner are
compared in

© CRESTA Consortium Page 60 of 73

Figure 7.24 and Figure 7.25. The speed-up achieved using OpenACC directives is 1.30
with a 16th order polynomial on 16,384 GPUs compared to 16,384 nodes with 262144
CPU cores. However with a 14th order polynomial we cannot obtain better
performance with OpenACC version. Figure 7.2 shows that the performance for the
kernels reduces from 61.0 Gflops to 50.5 Gflops with decreasing the number of
elements from 512 to 128 per GPU using 14th order of polynomial. larger values of N
give better performance. I am not sure of the reason for this, but it might be that the
amount of work per thread (which is proportional to N) is greater, which either leads to
better kernel efficiency or helps to offset the latency cost of launching kernels.
Simulations with larger values of N will run slower than those with smaller values, but
larger-N gives better performance.

Figure 7.24 The strong scalability for Nek5000 using a 14th order polynomial. The total number or
grid points is 3,468 M.

Figure 7.25 The strong scalability for Nek5000 using a 16th order polynomial. The total number of
grid points is 5177 M.

7.4.6 Summary	
 of	
 the	
 performance	
 improvements	
 achieved	

GPGPU	

Nek5000 code has been fully ported to exploit the processing power of multi-GPU
systems by using OpenACC compiler directives. The work focused on porting the most

0	

2	

4	

6	

8	

10	

12	

14	

16	

4096	
 8192	
 16384	

Ti
m
e(
s)
/s
te
p	

Number	
 of	
 nodes/GPUs	

OpenACC+MPI	

MPI	

0	

1	

2	

3	

4	

5	

6	

7	

8	

4096	
 8192	
 16384	

Ti
m
e(
s)
/s
te
p	

Number	
 of	
 nodes/GPUs	

OpenACC+MPI	

MPI	

© CRESTA Consortium Page 61 of 73

time-consuming parts of Nek5000, namely the matrix-matrix multiplication and the
preconditioned linear solve operation, to GPGPU. The gather-scatter kernel used with
MPI operations was redesigned in order to decrease the amount of data transferred
between the host and the accelerator. The speed-up achieved using OpenACC
directives is 1.30 with a 16th order polynomial on 16,384 GPUs when compared to
16,384 full CPU nodes having 262,144 CPU cores in total.

We estimate overlapping of the GPU kernels with host-accelerator memory transfers
would further increase the performance of the OpenACC version of the Nek5000. Such
developments will be part of future research.

AMR	

Within CRESTA we implemented in Nek5000 all the tools necessary to dynamically
modify the mesh structure during the simulation by changing the global number of
elements through h-refinement. It allows for non-conformal meshes which add more
flexibility to the grid generation by removing the refinement propagation problem in the
conformal meshes. Such propagation would lead to unnecessary elements in the far-
field as well as high aspect-ratio elements that are detrimental to the iterative solver
performance. It also allows for control of the computational error during the simulation
by using proper error estimator.

Depending on the adopted error estimator different goals can be achieved, that is,
proper representation of different flow features by resolving advected structures in the
flow, or proper treatment of the flow stability properties by resolving sensitive regions in
the flow. In our numerical experiments, we found the non-conformal version of
Nek5000 to be the most efficiently parallelized component of our code.

Currently the biggest constraint in the parallel scalability is set by the performance of
the grid partitioner, showing partitioning from scratch strategy to be inefficient. Right
now we are investigating other partitioning strategies. This would unfortunately not
allow exascale simulations in which advected flow features are followed either, as the
mesh requires continuous adjustment and does not converge to any time independent
grid structure. On the other hand, in the stability calculations where the final mesh
structure can be time independent, the costly AMR with mesh adaptivity can be used
as preprocessing step. Then the non-conformal Nek5000 solver can be used during the
main simulation run to have computations at a multi-peta –or exascale.

7.5 References	

[1] p4est home page, http://www.p4est.org/

[2] ParMetis home page,
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

[3] Gottlieb, D. I., and Orszag, S. A. Numerical Analysis of Spectral Methods:
Theory and Applications, SIAM-CBMS, Philadelphia, 1977

[4] S. Markidis, J. Gong, M. Schliephake, E. Laure, A. Hart, D. Henty, K. Heisey
and P. F. Fischer, OpenACC Acceleration of Nek5000, Spectral Element Code
Advances in Engineering Software Journal (under review)

[5] J. Gong, S. Markidis, M. Schliephake, E. Laure, D.S. Henningson, P. Schlatter,
A. Peplinski, A. Hart, J. Doleschal, D. Henty and P. F. Fischer, Nek5000 with
OpenACC, Lecture Notes in Computer Science, Springer (accepted)

[6] P. Schlatter and G. K. El Khoury, Turbulent flow in pipes, PDC newsletter, 2012
No.1

[7] Nek5000 web page, Available online at: http://nek5000.mcs.anl.gov

[8] J. Malm, P. Schlatter and D. S. Henningson, “Coherent structures and dominant
frequencies in a turbulent three-dimensional diffuser”, J. Fluid Mech. 2012.

© CRESTA Consortium Page 62 of 73

[9] Bernd Mohr, Wolfgang Frings, “Extreme Scaling Workshop 2010 Report”, Jülich
Supercomputing Centre, 2010. Available online at:
http://juser.fz-juelich.de/record/9600/files/ib-2010-03.pdf.

[10] Paul Fischer, “Nek5000 Tutorial”, 2010. Available online at:
http://www.mcs.anl.gov/~fischer/nek5000/fischer_nek5000_dec2010.pdf.

[11] Nekbone benchmark web page, available online at:
https://cesar.mcs.anl.gov/content/software/thermal_hydraulics

© CRESTA Consortium Page 63 of 73

8 OpenFOAM	

OpenFOAM® is an open source library for computational multiphysics and especially
computational fluid dynamics (CFD) problems. The library is a "toolbox" which provides
a selection of different solvers as well as routines for various kinds of analysis, pre- and
post-processing. OpenFOAM® is licensed under the GPL. As such, modifications have
been made to the code by different parties at different times and several versions are in
common use. In this project, we consider the official release from the OpenFOAM®
foundation (a not-for profit organization, wholly owned by OpenCFD Ltd.), and the
release from the OpenFOAM® Extend project.

8.1 Summary	
 of	
 the	
 previous	
 roadmaps	

Task Scheduled date Status

Benchmarking of the latest
version of the code

M36 Completed

Code analysis of latest
version of code

M36 Completed

Performance analysis of
kernels, libraries

M36 Completed

Test case 02: Pump
turbine power plant with
OpenFOAM-2.1

M18 Completed

Scientific results for the
pump turbine flow
simulation

M36 Completed

Iterative performance
improvement

M36 Cancelled

Table 8.1 Summary of the previous roadmaps for OpenFOAM

Benchmarking	
 of	
 the	
 latest	
 version	
 of	
 the	
 code	

Detailed benchmarking of the code proved considerably more difficult than what was
initially assumed as a number of tools, such as CrayPAT, failed to instrument the
OpenFOAM binary. Benchmarking was concluded by collaborating with Vampir design
team and instrumenting parts of the program manually.

Code	
 analysis	
 of	
 latest	
 version	
 of	
 code	

The task has been completed, resulting in an analysis of the structure of OpenFOAM.
For a detailed analysis see Section 8.2.

Performance	
 analysis	
 of	
 kernels,	
 libraries	

Performance analysis has been concluded on Hornet (Cray XC40) by using the Vampir
tool with analysis given in Section 8.2.

Test	
 case	
 02:	
 Pump	
 turbine	
 power	
 plant	
 with	
 OpenFOAM-­‐2.1	

The test case was run on Hermit. As the parallel scalability was poor, the focus is on
the scientific results with version 1.6-ext.

Scientific	
 results	
 for	
 the	
 pump	
 turbine	
 flow	
 simulation	

Turbulence modelling is a key point in the simulation of pump turbines. In certain
operating conditions strong swirling flows occurs in the draft tube. This leads to strong
pressure pulsation that in turn might lead to structural damage. The investigation was
done with version 1.6-ext.

Iterative	
 performance	
 improvement	

When performing the benchmarking and profiling tasks, it became evident that with the
resources available, OpenFOAM cannot be modified to be an exascale code and this
task was cancelled. A more detailed analysis is given in Section 8.2.

© CRESTA Consortium Page 64 of 73

8.2 Roadmap	
 to	
 exascale	

OpenFOAM, as it is currently constructed, is not an exascale code, at least for the
exemplar scientific use cases available within CRESTA. In this section, we give an
overview of the less than ideal scalability of the code followed by an analysis and
recommendations for future improvements of the code.

8.2.1 Efficient	
 strong	
 scalability:	
 model	
 problem	
 	

8.2.2 The	
 pipe	
 test	
 case:	
 introduction	
 pipe	
 test	
 case	
 (OpenFOAM-­‐1.6-­‐ext)	

As a test case for a flow involving rotating meshes, we use a flow through a pipe. The
pipe is divided into three cylinders and the cylinder in the middle is set to rotate about
its axis. Boundaries of the pipes sections are set without any velocity boundary
conditions and therefore the rotation of the pipe midsection has no effect on the
properties of the flow. Coupling of meshes is implemented via two GGI interfaces,
sketched in the Figure 8.1 as the purple and yellow areas of a circle. The advantage of
this test case is that it uses GGI without the complexity of a whole hydraulic machine.

The pipe is discretized into 6940350 cells, and its domain is decomposed by the
OpenFOAM utility “decomposePar” with the “scotch” method enabled. Inlet and outlet
boundaries are defined at the respective ends of the pipe, and the initial conditions are
set accordingly. For the numerical solution, the pimple method is used with the rotating
mesh approach, thus the OpenFOAM solver “pimpleDyMFoam” is chosen.

8.2.3 Strong	
 scaling	
 results	

Figure 8.2 shows the results of a scaling test of the pipe test case on the HPC system
Hornet at HLRS. One node on Hornet consists of 24 cores, so the range of parallelism
tested is between one node and 64 nodes, or from 24 cores to 1536 cores. Between
one node and 16 nodes we can see a nearly ideal speedup, at some points even super
linear.

As a rule of thumb, CFD problems using FVM for its solution should be stated with at
least 50.000 cells per core in order to get a decent speedup. As we can see in Figure
8.2, OpenFOAM shows good scaling up to 16 nodes, or 384 cores, where we are using
at about 18.000 cells per core. Therefore, in this test case OpenFOAM shows quite a
good scaling behaviour for a CFD code. Nevertheless, as the number of cells per core
would need to be significantly less than this for OpenFOAM to reach exascale.

Figure 8.1: Pipe test case with two GGI interfaces (OpenFOAM-1.6-ext).

© CRESTA Consortium Page 65 of 73

Figure 8.2: Scaling test on the pipe test case with about 7 million cells.

8.2.4 Instrumentation	
 of	
 OpenFOAM-­‐1.6-­‐extend	
 with	
 Vampir	

After numerous tries, we finally succeeded in instrumenting OpenFOAM with Vampir
for tracing experiments. In this section, we would like to give a short overview on how
the instrumentation process was performed.

First we set the compiler command environment variable to the Vampir wrapper as
follows:
CC = vtcxx -vt:inst manual -vt:cxx CC -vt:mpi –DVTRACE

Notice that we are used manual instrumentation user functions as well as
instrumentation of MPI calls.

We then compiled OpenFOAM in a standard way, i.e.,
mkdir build
cd build
cmake –DCMAKE_INSTALL_DIR=path_to_install_to
make

Automatic instrumentation of OpenFOAM was feasible because OpenFOAM uses a lot
of calls to small templated functions. Normally, these functions would be inlined and the
overall context optimised by the compiler. This is not the case when using automatic
instrumentation performed by a tool such as Vampir, since instrumenting function calls
prevents the compiler from inlining the functions and optimizing their context.

As an example of instrumentation preventing optimizations, consider the
implementation of a basic vector operation in the file
“src/foam/primitives/VectorSpace/VectorSpaceM.H”:
template<int N, int I>

class VectorSpaceOps

{

© CRESTA Consortium Page 66 of 73

public:

 static const int endLoop = (I < N-1) ? 1 : 0;

 ...

 template<class V1, class V2, class EqOp>

 static inline void eqOp(V1& vs1, const V2& vs2,
EqOp eo)

 {

 eo(vs1.v_[I], vs2.v_[I]);

 VectorSpaceOps<endLoop*N,
endLoop*(I+1)>::eqOp(vs1, vs2, eo);

 }

 ...

};

In the code excerpt, an iterative call to the scalar function “eo” in a vector operation is
implemented by a recursive call to the member function “eqOp”, which sits in the
template class “VectorSpaceOps”. The iterations are controlled by a template
parameter “int I”, which operates as a compile time constant loop iterator. In
general, such constructs will be inlined by modern optimizing compilers. If every call to
the member function “eqOp” and the basic operator function “eo” would be
instrumented, the tracing of these functions would cost more than performing the actual
scalar operations within the vector operation, strongly distorting the performance
measurements.

8.2.5 Tracing	
 of	
 pimpleDyMFoam	
 on	
 pipe	
 test	
 case	
 with	
 Vampir	

As an example of using Vampir on OpenFOAM for tracing experiments, consider the
pimpleDyMFoam solver and a smaller version of the pipe test case in terms of cell
numbers (866295 cells). We manually instrumented the pimpleDyMFoam for tracing
every entry in a loop of the solver implementation. Figure 8.3 shows the visual call tree
output of Vampir. The tracing was conducted with a number of processors with which
the parallel efficiency was known to have been decreased, i.e., no further speedup
from increasing the number of processors had been acquired.

As can be seen from the trace in Figure 8.3, most of the time is being spent in the
MPI_Allreduce call within the inner-most loop. The MPI_Allreduce in question belongs
to the dot-product (scalarproduct) of the PCG-solver, which is used in this test case for
solving the pressure equation. Because the PCG method for solving the pressure
equation is not a special feature of OpenFOAM, we argue that a review of the applied
algorithms is needed here to evolve OpenFOAM towards exascale.

© CRESTA Consortium Page 67 of 73

Figure 8.3: Vampir trace call tree of manually instrumented pimpleDyMFoam on pipe test case.

8.2.6 Roadmap	
 to	
 exascale:	
 OpenFOAM	
 conclusions	

Updating rotating meshes as described in Section 8.2.2 involves changes in the MPI
communicator, i.e. in the communication pattern used between the computing cores.
Unfortunately, the typical use case for MPI communicators is that they are set up once
in the beginning of a simulation and not modified during runtime as modifications
require a collective operation within the parent communicator. Our measurements
indicate that the time spent in the mesh update remains nearly constant between 256
and 1024 cores, i.e., it does not parallelize at all.

Besides the rotating mesh interface, there are other well-known problems limiting the
scalability of all CFD codes, not only OpenFOAM. Solving the coupled pressure and
velocity equations, for example, is generally a problem in simulating incompressible
fluids. In addition, the widely-used linear solver CG (conjugate gradients) and derived
solvers require the frequent calculation of global scalar products which act as a global
barriers (for analysis see the previous subsection). In order to perform exascale
computations with CFD codes, fundamental research on new mathematical algorithms
has to be performed.

A problem specific to OpenFOAM is its complexity. For instance, an attempt to
implement parallel I/O by using MPI I/O in OpenFOAM failed, since MPI experts within
CRESTA, could not get the needed insight into the code due to the complexity of the
codebase and the resource limitations of the project.

OpenFOAM takes advantage of the possibilities of C++, such as expression templates,
operator overloading and complex class hierarchies. This is a design decision by the
developers of OpenFOAM, as their goal has been to create a widely-applicable CFD
code where the users can easily implement physical models without taking care of
matrix assembly and linear solver technology. Such features are highly appreciated by
users, but makes any changes to modify the core structure very time consuming for
developers who are not familiar with the design. In order to be prepared to exploit the
computing capabilities of future exascale systems, we strongly recommend
OpenFOAM, or another CDF code with similar capabilities, undergo disruptive changes
or a partial rewrite under a close collaboration of a group of experts in HPC, numerics
and CFD.

© CRESTA Consortium Page 68 of 73

8.3 Exemplar	
 scientific	
 simulation	

Since the parallel scalability of OpenFOAM is not sufficient for exascale, we not focus
solely the exemplar scientific simulation of OpenFOAM, i.e., pump turbine test case.
For details and further description of the test case, refer to the CRESTA Deliverable
D6.4 [6].

8.3.1 Choosing	
 an	
 OpenFOAM	
 version:	
 OpenFOAM	
 1.6-­‐ext	
 versus	
 OpenFOAM	
 2.1.1	

The pump turbine flow simulation was tested with the newer version of OpenFOAM,
namely version 2.1.1, where the coupling interface between the (rotating) meshes is
called AMI (arbitrary mesh interface). As an example case, a mesh with 40 million
elements was chosen. A speedup test was done between 64 and 1024 cores (see
Figure 8.4). Beyond 128 cores the performance of version 2.1.1 strongly and rapidly
decreases. Version 1.6-ext with GGI interface scales quite well up to 1024 cores
instead. For this reason we further concentrated and used version 1.6-ext for the pump
turbine application.

Figure 8.4: Parallel Performance of OpenFOAM version 1.6-ext and 2.1.1 for the pump turbine

simulation

8.3.2 Scientific	
 results	

For a pump turbine flow simulation it is not only sufficient to resolve the large flow
structures, but also small turbulent scales. As standard RANS models only predict
large turbulent scales, an eddy resolving method – LES – must be applied. With LES it
is computationally extreme expensive to resolve the small eddies in the boundary layer.
For this reason we implemented the IDDES (improved delayed detached eddy
simulation) [5] type turbulence model based on the RANS-SST model [4]. This model
uses RANS in the boundary layer and LES in the core flow using some blending
functions.

A pure LES would require some billions of elements for the complete pump turbine.
The problem is that the pump turbine mainly consists of walls: the spiral casing, 20 stay
and 20 guide vanes, 7 runner blades and the draft tube with extension and bending
(see Figure 8.5). A rather coarse RANS mesh would require around 10 million
elements (10M). We investigated this mesh and a refinement with 20 million elements

© CRESTA Consortium Page 69 of 73

(20M). This mesh is still away from ideal. An ideal mesh would require at least 100
million elements for the pump turbine.

Figure 8.5: Geometry of the pump turbine used for the flow simulations

Beneath the large mesh size, quite small time steps of 0.1ms are needed. That means
around 400 time steps per runner revolution. To get valuable statistics of turbulent data
50 runner revolutions are necessary, leading to 20000 time steps for the 20M mesh.
Larger meshes would require smaller time steps to keep the Courant number below
one in the region of resolved turbulence.

The simulations were done with OpenFOAM-1.6-ext on Hector XE6 and Hermit XE6 on
256 cores for the 10M mesh and 512 cores for the 20M mesh. The simulation time for
the coarse mesh is 90 hours and for the fine mesh 110 hours.

The results for the pump turbine flow simulation were published at the 10th International
ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements [2]
and at the High Performance Computing in Science and Engineering ’14 [3].

The axial velocity distribution in a cutting plane in the draft tube is depicted in Figure
8.6. It is quite obvious that the RANS model only resolves large flow structures and no
small turbulent scales (left). The IDDES-type turbulence model is resolving small
turbulence structures (middle and right).

Figure 8.6: Axial velocity distribution in a cutting plane in the draft tube; colour range: -5 to 2 m/s;

left and middle 10M mesh, right 20M mesh; left RANS-SST model, middle and right IDDES-SST
model

© CRESTA Consortium Page 70 of 73

A comparison of the turbulent flow simulation in the draft tube cone with measurements
from [1] is depicted in Figure 8.7. The RANS simulation significantly overestimates the
backflow in the core region. With the usage of the hybrid IDDES turbulence model, the
velocity distribution fits better with the experimental data.

Figure 8.7: Velocity distribution in the draft tube for the axial (left) and the tangential and radial

component (right) in comparison with measurements

A consideration of the turbulent content of the flow is done for the turbulent kinetic
energy (see Figure 8.8). The RANS simulation clearly underestimates the amount of
turbulent kinetic energy (TKE) in the core flow with and without the modeled content of
the turbulence model. The content of the modeled TKE is quite small for the IDDES
simulations. The coarse mesh IDDES simulation shows too high values of TKE in the
core. The results obtained by the IDDES-SST 20M simulation agree well with the
measurements instead across the whole diameter.

Figure 8.8: Turbulent kinetic energy distribution in the draft tube in comparison with

measurements; solid: resolved part, dashed: resolved and modeled part

Due to the strong tangential and axial velocity component for the outer radius, in the
core a low pressure zone arises, the so called vortex rope phenomenon. The IDDES-
SST model resolves a larger vortex rope (see Figure 8.9), as the RANS model is too
dissipative. The hybrid model is able to resolve small structures at the end of the vortex

© CRESTA Consortium Page 71 of 73

rope. The results also show that the finer the mesh for the hybrid model the finer the
turbulent structures are. At the end of the vortex rope it decays to small turbulent
structures.

Figure 8.9: Visualization of the vortex rope phenomenon with iso-surface of pressure; top: 10M
mesh, left: RANS-SST, right: IDDES-SST, bottom: left: 20M mesh IDDES-SST, right: experiment

The smaller vortex rope obtained by the RANS-SST simulation leads to a higher
frequency for the pressure fluctuation compared to experimental results (see Figure
8.10, left). The coarse mesh IDDES simulation overestimates the pressure amplitude
and somewhat the frequency. The fine mesh IDDES simulation fits the measurements
best for the frequency predicting slightly higher pressure amplitude. Generally, the
higher harmonics of the vortex rope frequency are better represented by the IDDES
simulations than the RANS simulations. This trend is also visible for the frequency

© CRESTA Consortium Page 72 of 73

generated by the runner blade wakes (see Figure 8.10, right). Using the RANS
turbulence model they are not able to be simulated in contrast to using the IDDES
turbulence model.

Figure 8.10 Pressure pulsations in the draft tube cone for different simulations and experiment

	

Conclusions	

The IDDES-type turbulence model was successfully applied to a Francis pump turbine
flow simulation at turbine part load operating conditions. The validation against
measurements shows a better representation of the velocity field in the region where
the vortex rope occurs compared to RANS simulations. The vortex rope phenomenon
itself can be better resolved using the hybrid turbulence model. The resulting pressure
fluctuations, validated against measurements as well, show a better resolution of the
vortex rope induced frequencies, if the mesh resolution is fine enough. Furthermore,
only the IDDES turbulence model is able to resolve details like pressure pulsation
generated by the runner blade wakes. The IDDES turbulence model predicts the
turbulent kinetic energy very well compared to measurements.

The used mesh sizes are at the lower limit of what has to be used for the hybrid RANS-
LES turbulence model. Resolving the boundary layer and the core flow region requires
much more elements, namely at least 100 million elements. Despite of the large
number of elements, this is still far away from a well resolved LES resolution. This
means that in the future more computational resources are needed. It seems to be
quite challenging to optimize such a CFD code for this kind of application.

8.4 References	

[1] Kirschner O.: Experimentelle Untersuchung des Wirbelzopfes im geraden

Saugrohr einer Modell-Pumpturbine, Dissertation, IHS-Mitteilungen, Vol. 32.,
2011

[2] Krappel T., Kuhlmann H., Kirschner O., Ruprecht A., Riedelbauch S.: Validation
of an IDDES-type Turbulence Model and Application to a Francis Pump Turbine
Flow Simulation, 10th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements, Marbella, Spain, 2014

[3] Krappel T., Ruprecht A., Riedelbauch S.: Flow Simulation of Francis Turbines
using Hybrid RANS-LES Turbulence Models, High Performance Computing in
Science and Engineering ’14, Springer 2014 (to be published)

[4] Menter F., Kuntz M., Langtry R.: Ten Years of Industrial Experience with the
SST Turbulence Model, In Turbulence, Heat and Mass Transfer, Vol. 4, pp.625-
632, 2003

[5] Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES
approach with delayed-DES and wall-modeled LES capabilities, International
Journal of Heat and Fluid Flow 29, pp. 1638-1649, 2008

[6] Exemplar scientific simulations, CRESTA Deliverable D6.4.

© CRESTA Consortium Page 73 of 73

