

Copyright © CRESTA Consortium Partners 2014

D6.5	
 –	
 Peta	
 to	
 exascale	
 enabled	

applications	
 (Software)	

WP6:	
 Co-­‐design	
 via	
 applications	

Due date: M39

Submission date: 31/12/2014

Project start date: 01/10/2011

Project duration: 39 months

Deliverable lead
organization CSC

Version: 1.5

Status Final version for EC review

Author(s):

Mark Abraham (KTH), Mikko Byckling (CSC), Willem Deconinck
(ECMWF), Derek Groen (UCL), Jing Gong (KTH), Mats Hamrud
(ECMWF), George Mozdzynski (ECMWF), Adam Peplinski
(KTH), Jan Åström (CSC), Jan Westerholm (ABO)

Reviewer(s) Stefano Markidis (KTH), Achim Basermann (KTH), Lorna Smith
(EPCC)

Dissemination level

PU PU – Public

	

 	

Project Acronym CRESTA

Project Title Collaborative Research Into Exascale Systemware, Tools and
Applications

Project Number 287703

Instrument Collaborative project

Thematic Priority ICT-2011.9.13 Exa-scale computing, software and simulation

Copyright © CRESTA Consortium Partners 2014

Version	
 History	

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 29/08/2014 Template of the deliverable Mikko Byckling (CSC),
Jan Åström (CSC)

0.2 27/11/2014 Added introduction and summary Mikko Byckling (CSC)

0.3 27/11/2014 IFS contribution George Mozdzynski
(ECMWF), Mats Hamrud
(ECMWF) , Willem
Deconinck (ECMWF)

0.4 27/11/2014 HemeLB contribution Derek Groen (UCL)

0.5 28/11/2014 Nek5000 contribution Jing Gong (KTH), Adam
Peplinski (KTH)

0.6 28/11/2014 Minor improvements Mikko Byckling (CSC)

0.7 2/12/2014 Gromacs contribution Mark Abraham (KTH)

0.8 2/12/2014 Elmfire contribution Jan Westerholm (ABO)

1.0 2/12/2014 First version for internal review Mikko Byckling (CSC)

1.1 9/12/2014 Addressed reviewer comments Mikko Byckling (CSC)

1.2 17/12/2014 Addressed reviewer comments Mikko Byckling (CSC),
Lorna Smith (EPCC), Jan
Westerholm (ABO)

1.3 17/12/2014 Addressed reviewer comments Mikko Byckling (CSC)

1.4 17/12/2014 Final version for EC review Mikko Byckling (CSC)

1.5 18/12/2014 Final check Catherine Inglis (UEDIN)

Copyright © CRESTA Consortium Partners 2014

Table	
 of	
 Contents	

1	
 EXECUTIVE	
 SUMMARY	
 ...	
 1	

2	
 INTRODUCTION	
 ...	
 2	

2.1	
 GLOSSARY	
 OF	
 ACRONYMS	
 ..	
 2	

3	
 ELMFIRE	
 ...	
 4	

3.3.1	
 Prerequisites	
 ...	
 4	

3.3.2	
 Compilation	
 and	
 installation	
 ..	
 4	

3.3.3	
 External	
 links	
 ..	
 4	

3.4	
 APPLICATION	
 PERFORMANCE	
 OVERVIEW	
 ...	
 4	

3.5	
 REFERENCES	
 ..	
 5	

4	
 GROMACS	
 ..	
 6	

4.1	
 LICENSING	
 ...	
 6	

4.2	
 ACQUISITION	
 ...	
 6	

4.3	
 INSTALLATION	
 ..	
 6	

4.3.1	
 Prerequisites	
 ...	
 6	

4.3.2	
 Compilation	
 and	
 installation	
 ..	
 6	

4.3.3	
 External	
 links	
 ..	
 7	

4.4	
 APPLICATION	
 PERFORMANCE	
 OVERVIEW	
 ...	
 7	

4.5	
 REFERENCES	
 ..	
 8	

5	
 HEMELB	
 ...	
 9	

5.1	
 LICENSING	
 ...	
 9	

5.2	
 ACQUISITION	
 ...	
 9	

5.3	
 INSTALLATION	
 ..	
 9	

5.3.1	
 Prerequisites	
 ...	
 9	

5.3.2	
 Compilation	
 and	
 installation	
 ..	
 9	

5.3.3	
 External	
 links	
 ..	
 10	

5.4	
 APPLICATION	
 PERFORMANCE	
 OVERVIEW	
 ...	
 10	

5.5	
 REFERENCES	
 ..	
 11	

6	
 IFS	
 ...	
 12	

6.3.1	
 Prerequisites	
 ...	
 12	

6.3.2	
 Compilation	
 and	
 installation	
 ..	
 13	

6.4	
 APPLICATION	
 PERFORMANCE	
 OVERVIEW	
 ...	
 13	

6.5	
 REFERENCES	
 ..	
 14	

7	
 NEK5000	
 ..	
 15	

7.3.1	
 Prerequisites	
 ...	
 16	

7.3.2	
 Compilation	
 and	
 installation	
 ..	
 17	

7.3.3	
 External	
 links	
 ..	
 21	

7.4	
 APPLICATION	
 PERFORMANCE	
 OVERVIEW	
 ...	
 21	

7.5	
 REFERENCES	
 ..	
 23	

Index	
 of	
 Figures	

Figure 3.1 Elmfire memory scalability per core in a weak scaling test for a model
problem ... 5	

Figure 4.1 Scaling performance of Gromacs 4.5, 4.6 and 5.0 on Sandy Bridge (SNB)
and Haswell (HSW) x86 platforms. ... 8	

Figure 5.1 Obtained maximum performance achieved with HemeLB between 2007 and
2014. All improvements after 2011 were achieved during the CRESTA project. The
sparsity of the data sets is roughly indicated by the color of the circle (very sparse is

Copyright © CRESTA Consortium Partners 2014

red, non-sparse cylinder data sets are blue), and the core count used by the size of the
circle ... 10	

Figure 5.2 Obtained maximum number of time steps per second achieved, as a
function of the problem size in the simulation (measured in number of lattice sites). .. 11	

Figure 6.1 10 km / L137 global IFS forecast model performance, RAPS12 (CY37R3, on
HECToR), RAPS13 (CY38R2, on TITAN) .. 13	

Figure 7.1 Two–dimensional cut through the domain of the convected-cone problem
showing the grid structure (black squares) and the passive scalar profile (color scale).
Each element (3D cube depicted by a square) corresponds to the mesh of 12x12x12
grid points. .. 21	

Figure 7.2 Parallel efficiency of the simulations without (ε=1.01) and with (AMR) grid
adaptation for non-conformal version of Nek5000. ... 22	

Figure 7.3 The weak scaling results on the Titan supercomputer with up to 16,384
GPUs for NekBone (red line) and in the ideal case (black dashed line). 22	

Figure 7.4 The strong scalability for Nek5000 using 16th-order polynomial. Total
number of grid points is 5177 M. .. 23	

	

Index	
 of	
 Tables	

Table 3.1 Elmfire identification ... 4	

Table 4.1 Gromacs identification .. 6	

Table 5.1 HemeLB identification ... 9	

Table 6.1 IFS and Atlas identification ... 12	

Table 6.2 Evolution of IFS 10 km L137 model performance using 45,056 cores on
HECToR and TITAN ... 14	

Table 7.1 Nek5000 identification .. 15	

© CRESTA Consortium Page 1 of 23

1 Executive	
 summary	

This deliverable, “D6.5 Peta to exascale enabled applications (Software)”, describes
the status of the CRESTA applications at the end of the project. In short, the licensing
policy, availability and the performance improvements achieved during CRESTA for
each of the applications are:

ELMFIRE: Proprietary license, however access available on request. Contact details to
use when applying for a license are given in the Elmfire section of this document. A
domain decomposition version of ELMFIRE has been developed during CRESTA,
resulting in a significant reduction in memory consumption.

GROMACS: Licensed under LGPLv2 and available in a public code repository.
CRESTA modifications included in the main trunk. Performance and scalability
(through ensemble computations) have been significantly improved during CRESTA.

HemeLB: Licensed under GPLv3 and available in a public code repository. CRESTA
modifications included in the main trunk. Both performance and scalability have been
significantly improved during CRESTA.

IFS: Proprietary license, contact details for applying for a license given in the IFS
section of this document. CRESTA modifications included in the main trunk. Both
performance and scalability have been significantly improved during CRESTA.

NEK5000: Licensed under GPLv3 and available in a public code repository. CRESTA
modifications for OpenACC included in the main trunk, AMR modifications to be
included in the trunk as soon as scalable pressure preconditioner has been
implemented. By using OpenACC to offload computations to GPGPUs, performance
improved during CRESTA.

OpenFOAM: Licensed under GPLv3 and available in a public code repository.
Development effort ceased after M24. No improvements made to the code trunk during
CRESTA.

Note that this document is closely linked to CRESTA deliverable “D6.1.3 Roadmap to
exascale (update 2)“. D6.1.3 contains thorough performance analysis and a roadmap
to reach exascale performance. This document considers the practical issues, such as
how and from where to obtain the source code and how to apply or use the
modifications implemented during CRESTA with the application.

© CRESTA Consortium Page 2 of 23

2 Introduction	

This document contains a description of the updated CRESTA applications that were
successfully improved during the project (ELMFIRE, GROMACS, HemeLB, IFS and
Nek5000). As improving the performance of OpenFOAM was deemed to require almost
a complete rewrite of the whole application, its development within the project was not
continued after M24.

For each application included we give either instructions or links to instructions for
building the application with modifications done during the project in place. Also
included are performance and scalability metrics to assess the achieved performance
improvements. For detailed analysis of application performance and scalability as well
as a roadmap for future improvements, see CRESTA deliverable “D6.1.3 Roadmap to
exascale (update 2)“.

The functionality and research goals of the applications can be summarized as follows:

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and
interaction between high-speed particles in a torus-shaped geometry on a three
dimensional grid. The particles are held together by an external magnetic field. The
objective is to simulate significant portions of large-scale fusion reactors like JET or
ITER.

GROMACS: is a molecular dynamics code that is extensively used for simulation of
biomolecular systems. Useful investigation of this kind of system is typically limited by
computational capacity. The limitations relate to both the system sizes and in particular
the time duration of the processes which are of interest. Efficient implementation of
ensemble simulations is also needed in order to achieve statistical validity.

HemeLB: is intended to form part of a clinically-deployed exascale virtual physiological
human. HemeLB simulates blood flow in measured blood vessel geometries. The
objective is to develop a clinically useful exascale tool.

IFS: is the production weather forecasting application used at the European Centre for
Medium Range Weather Forecasts (ECMWF). The objective is to develop more
reliable 10-day weather forecasts that can be run in an hour or less.

NEK5000: is an open-source code for the simulation of incompressible flow in complex
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000.

2.1 Glossary	
 of	
 Acronyms	

ACML AMD Core Math Library

AVX Advanced Vector Extensions

BSD Berkeley Software Distribution

CAF Coarray Fortran

CUDA Compute Unified Device Architecture

DLR Deutschen Zentrums für Luft- und Raumfahrt

ECMWF European Centre for Medium-Range Weather Forecasts

EPCC Edinburgh Parallel Computing Centre

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FTP File Transfer Protocol

© CRESTA Consortium Page 3 of 23

GGI General Graphics Interface

GNU GNU's Not Unix!

GPL GNU General Public License

GPU Graphics Processing Unit

GSL Gnu Scientific Library

HDF5 Hierarchical Data Format

KTH Kungliga Tekniska Högskolan

LGPL GNU Lesser General Public License

MKL Math Kernel Library

MPI Message Passing Interface

NDA Non-disclosure agreement

OpenMP Open Multiprocessing

PESSL Parallel Engineering and Scientific Software Library

PETc Portable, Extensible Toolkit for Scientific Computation

PME Particle Mesh Ewald

POSIX Portable Operating System Interface

PRACE Partnership for Advanced Computing in Europe

S3L Sun Scalable Scientific Subroutine Library

SVN Subversion

UCL University College London

USTUTT University of Stuttgart

XML Extensible Markup Language

© CRESTA Consortium Page 4 of 23

3 Elmfire	

Application Identification (e.g. Version No)

Elmfire version 12

Table 3.1 Elmfire identification

3.1 Licensing	

The code is not licensed, but access to the code can be obtained on request. Public
licensing of the code is under consideration once the remaining changes have been
implemented. 	

3.2 Acquisition	

The application is not publicly available, but can be accessed on request for
appropriate scientific purposes.

Contact	
 person	

Timo Kiviniemi (timo.kiviniemi@aalto.fi), Department of Applied Physics, Aalto
University School of Science, P.O.Box 14100, FI-00076 AALTO Finland

3.3 Installation	

The Makefile includes options for different platforms.

3.3.1 Prerequisites	

The code has been used on CRAY, BULL, IBM and INTEL/AMD architectures.
The code can utilize the PETSc/PESSL and ACML/MKL/GSL/ESSL libraries. The code
is purely MPI-based and has been compiled using the INTEL, Cray and PGI compilers.

3.3.2 Compilation	
 and	
 installation	

Different options exist within the Makefile for different platforms.

3.3.3 External	
 links	

None

3.4 Application	
 performance	
 overview	

The main challenge for this code was memory consumption and one of the key goals
for CRESTA was to develop a domain decomposition version of the code. This
development has been achieved and performance runs have been carried out with this
code on half a billion particles on 4096 cores (see figure below). These results
demonstrate that memory consumption per core is currently almost proportional to the
number of particles, a significant achievement and an original objective set within
CRESTA. This is described in more detail in Deliverable D6.1.3 [1].

© CRESTA Consortium Page 5 of 23

Figure 3.1 Elmfire memory scalability per core in a weak scaling test for a model problem

3.5 References	

[1] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3.

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

M
em

or
y	

M
B/
co
re
	

#	
 of	
 cores	

Weak	
 scaling	
 memory	
 (100k	
 parTcles	
 per	

core)	

Original	
 memory	
 per	
 core	

(MB)	

New	
 memory	
 per	
 core	
 (MB)	

© CRESTA Consortium Page 6 of 23

4 Gromacs	

Application Identification (e.g. Version No)

Gromacs 4.6, 5.0 (Molecular Dynamics)

Table 4.1 Gromacs identification

4.1 Licensing	

GROMACS is free software, distributed under the GNU Lesser General Public License
(LGPL) Version 2.1.

4.2 Acquisition	

Released versions of the code can be freely downloaded without registration from
http://www.gromacs.org/Downloads. The source distribution can be used to download
and run the tests automatically, or they can be obtained separately by following the
instructions at http://www.gromacs.org/Documentation/Installation_Instructions#testing-
gromacs-for-correctness.

The main development version of Gromacs is also publicly accessible as a git
repository from either the Gromacs servers
 git clone git://git.gromacs.org/gromacs.git

or from Github
 git clone https://github.com/gromacs/gromacs.git

4.3 Installation	

4.3.1 Prerequisites	

Gromacs 5.0 requires

• both C99 and C++98 compilers (and is extremely compiler-portable),

• CMake version 2.8.8 or newer,

• for best performance with PME, either FFTW or MKL is required; FFTW can be
downloaded and built automatically, as shown above, and

• for builds that target accelerators, you should honor the requirements of that
platform, e.g. nvcc supports only specific versions of named compilers for GPU
builds. (Our experience is that you can use other compilers if you manually
circumvent the checks, however.)

On BlueGene/Q, either XL or bgclang compilers may be used.

4.3.2 Compilation	
 and	
 installation	

For example, on everyday x86 machines with MPI and GPUs, where the build host is
identical to the execution host, having downloaded a source distribution (or made a git
clone), one can use
tar xfz gromacs-5.0.2.tar.gz

cd gromacs-5.0.2

mkdir build

cd build

cmake .. -DGMX_BUILD_OWN_FFTW=ON -
DREGRESSIONTEST_DOWNLOAD=ON -DGMX_GPU=on -DGMX_MPI=on

make

© CRESTA Consortium Page 7 of 23

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

Any released version of any of the major compilers may be used, although the most
recent version should be preferred. Best results are normally obtained with gcc.

Standard CMake behaviour is fully supported, including the use of
CMAKE_INSTALL_PREFIX, CMAKE_PREFIX_PATH, BUILD_SHARED_LIBRARIES,
CMAKE_C_COMPILER, CMAKE_CXX_COMPILER.

4.3.3 External	
 links	

Up-to-date Gromacs installation instructions may be found at
http://www.gromacs.org/Documentation/Installation_Instructions. Detailed instructions
for BlueGene/Q and Cray systems can be found there.

4.4 Application	
 performance	
 overview	

The improvements implemented during CRESTA have greatly enhanced the simulation throughput
throughput scientists can obtain with Gromacs. Strong scaling is the major design target for MD
target for MD simulation software, because scientific quality is normally in direct proportion to the
proportion to the amount of sampling conducted. Not only are CUDA, BlueGene/Q, and K-computer
K-computer architectures now fully supported, but their implementation and supporting
infrastructure are designed to be performance portable, to the extent we can anticipate hardware
hardware trends. Even on x86 hardware that was available three years ago, the performance of
performance of Gromacs 4.6 is around 20% faster than that of Gromacs 4.5 on the same hardware
same hardware (through better use of SIMD of that era, and elimination of redundant computation
computation in inner kernels), and the enhancements to strong scaling improve total performance
performance by more than a factor of 2. Changes to x86 scaling performance can be seen in
seen in

© CRESTA Consortium Page 8 of 23

Figure 4.1. Further information is available in Deliverables D6.1.3 [3] and D6.4 [4].

Figure 4.1 Scaling performance of Gromacs 4.5, 4.6 and 5.0 on Sandy Bridge (SNB) and Haswell
(HSW) x86 platforms.

The completion of the related Copernicus project [2] makes it straightforward to
execute elaborate ensemble-parallelism schemes using multiple Gromacs simulations
as the computational workhorse. For the first time, it is easy for scientists to make
effective use of Gromacs to implement advanced sampling algorithms at full scale on
any current petascale machine.

4.5 References	

[2] Pronk et al., “Copernicus: a new paradigm for parallel adaptive molecular

dynamics”, SC11 High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for. IEEE, 2011.

[3] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3.

[4] Exemplar scientific simulations, CRESTA Deliverable D6.4.

© CRESTA Consortium Page 9 of 23

5 HemeLB	

HemeLB is a software package for modelling and simulation of haemodynamics in
sparse geometries. To date, it has been mainly applied to the simulation of complex
cerebrovascular networks and cerebrovascular malformations such as aneurysms.
HemeLB includes: a) a GUI for simulation definition, b) a highly-optimised parallel
lattice-Boltzmann (LB) solver including different LB collision operators, boundary
conditions, and rheology models, c) a visualisation client allowing real-time
visualisation and simulation steering, and d) a number of postprocessing tools. The
package is currently developed at the Centre for Computational Science, UCL.

Application Identification (e.g. Version No)

HemeLB Commit: 4eefc9f6b55a29d8ec26f7b6de1605fff6357e60
Table 5.1 HemeLB identification

5.1 Licensing	

HemeLB is available under GPL, version 3.

5.2 Acquisition	

Public repository is hosted at http://ccs.chem.ucl.ac.uk/hemelb.

5.3 Installation	

5.3.1 Prerequisites	

HemeLB requires the following to be present on a system to run simulations:

• C++ - a C++ compiler compatible with C++ 2003 or better
o Supporting alignment control with __align__ or similar in order to build

dependencies
o Including C++ standard library
o Tested with Cray, Intel, and Gnu

• CMake – version 2.8.6 or better is required
• POSIX – environment must conform to POSIX standard. Compilation has been

tested with Debian linux, Mac OSX Snow Leopard, and various PRACE
machines.

• MPI – required for parallelism. HemeLB has been tested with openmpi, mpich
and cray MPI.

• MPI_IO – required for parallel I/O
• Python - Optional, needed only for validation of regression tests. Not needed

for production. Has an additional NumPy-package dependency.
HemeLB will automatically download and install the following dependencies if not
present:

• Google CTemplate – For details see http://code.google.com/p/ctemplate
• Boost
• CPPUnit - Optional, needed only for unit testing, not in production use. For

details see http://sourceforge.net/projects/cppunit/
• MPWide - Optional, needed only for multiscale simulations. For details see

http://castle.strw.leidenuniv.nl/software/mpwide.html
• ZLib – Data compression library, see http://www.zlib.net/
• TinyXML – For details see http://www.grinninglizard.com/tinyxml/
• Parmetis – Parallel graph partitioning package. For details see

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

5.3.2 Compilation	
 and	
 installation	

With your HemeLB checkout, run:

© CRESTA Consortium Page 10 of 23

mkdir build
cd build
cmake –DCMAKE_INSTALL_DIR=path_to_install_to
make

5.3.3 External	
 links	

Detailed information on installation can be found in hemelb/README and on the
HemeLB wiki at http://pauli.chem.ucl.ac.uk/trac, password restricted, access available
on request by members of the CRESTA consortium.

5.4 Application	
 performance	
 overview	

In this section, we show the development of the maximum achieved performance of
HemeLB over the years in Figure 5.1, as published in papers and technical reports. For
a detailed analysis of HemeLB performance, see [4].

At the start of the CRESTA project, in 2011, we were able to obtain a performance of
9.1 billion site updates per second using 12,288 cores. As a result of our collaborations
in CRESTA, we now have been able to obtain a performance of 153 billion site updates
per second using 49,152 cores in 2014. This constitutes a performance improvement of
a factor of 16.8, whereas Moore's law would predict a performance improvement of
approximately a factor of 2.8 over that period.

Figure 5.1 Obtained maximum performance achieved with HemeLB between 2007 and 2014. All
improvements after 2011 were achieved during the CRESTA project. The sparsity of the data sets is
roughly indicated by the color of the circle (very sparse is red, non-sparse cylinder data sets are
blue), and the core count used by the size of the circle

Although the maximum obtained performance is a good indicator of how HemeLB is
able to make more efficient use of high-end computing resources, it is only one of two
important performance aspects for scientific users in the field. This is because in
lattice-Boltzmann simulations the number of time steps required to reach convergence
scales along with the size of the system modelled. As such, it becomes increasingly
important for larger problems to measure the speed of our simulations, measured in
time steps resolved per second. In Figure 5.2 we present this measure for all the runs
which we previously presented in Figure 5.1. We find that our efforts within CRESTA
have allowed us to simulate larger geometries than ever, and that we have managed to
increase the rate of simulation to almost 2000 time steps per second. We believe these
benefits are mainly results from our single-core optimizations, our improvements in
domain decomposition, and the advent of newer and faster architectures such as Intel
Ivy Bridge.

For very large data sets (e.g., the huge cylinder), however, we do observe a lower
speed of about 600 time steps per second. Indeed, one of the major future challenges

© CRESTA Consortium Page 11 of 23

for HemeLB will be to improve this measure for large problems, allowing us to reach
convergence for these simulations within reasonable time spans.

Figure 5.2 Obtained maximum number of time steps per second achieved, as a function of the
problem size in the simulation (measured in number of lattice sites).

The work done in CRESTA has had major benefits for the domain-specific research
activities with HemeLB, raising its profile in the scientific community. Primarily we have
been able to model larger and more complicated geometries, and greatly reduce the
time-to-completion for our simulations. As examples of the scientific impact using
HemeLB, we have been able to publish new advances in high-profile domain journals
such as J. R. Soc. Interface [1], Physics Review E [2] and Interface Focus [3].

5.5 References	

[1] “Computer simulations reveal complex distribution of haemodynamic forces in

a mouse retina model of angiogenesis”, M.O. Bernabeu, C.A. Franco, M. Jones,
J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, J. Hetherington, H. Gerhardt,
P.V. Coveney, J. R. Soc. Interface (in press), arXiv preprint arXiv:1311.1640,
2013.

[2] “Choice of boundary condition for lattice-Boltzmann simulation of moderate
Reynolds number flow in complex domains”, R.W. Nash, H.B. Carver, M.O.
Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney, Physics Review
E 89, 023033, 2014.

[3] “Impact of blood rheology on wall shear stress in a model of the middle cerebral
artery”, M.O. Bernabeu, R.W. Nash, D. Groen, H.B. Carver, J. Hetherington, T.
Krüger, P.V. Coveney, Interface focus 3 (2), 20120094, 2013.

[4] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3.

 	

© CRESTA Consortium Page 12 of 23

6 IFS	

The Integrated Forecasting System (IFS) is the production numerical weather forecast
application at ECMWF. The IFS RAPS13 benchmark release contains a number of
model cases, ranging from a small T159 model (125 km global resolution) to a large
T3999 model (5 km global resolution).

The Atlas library is a framework for unstructured meshes on the sphere (including
parallelization) being used in the development of an alternative dynamical core option
to the spectral transform method used today in IFS. Atlas was developed within the
CRESTA project. A stand-alone benchmark case is provided for a simple gradient
computation based on a vertex-centered finite volume scheme, which is representative
of a communicating kernel with nearest neighbor overlap regions.

Application Identification (e.g. Version No)

IFS RAPS13, ECMWF internal cycle 38R2

Atlas library Pre-release version 0.3

Table 6.1 IFS and Atlas identification

6.1 Licensing	

IFS software (RAPS13) is available solely for benchmarking purposes and requires a
license from ECMWF. To request a license for RAPS13 IFS software please contact
Isabella.Weger@ecmwf.int, Deputy Director of Computing at ECMWF. The license for
IFS software prohibits distribution to a 3rd party.

The Atlas library is available under the conditions of an Apache 2.0 license.

6.2 Acquisition	

Upon receipt of a signed license by ECMWF, details for downloading (ftp
address/password), building and running the IFS RAPS13 benchmark will be provided
by email. These instructions are contained in a benchmark release document (14
pages).

The contact person for the IFS RAPS13 benchmark is George Mozdzynski
(George.Mozdzynski@ecmwf.int).

The contact person for the Atlas library is Willem Deconinck
(Willem.Deconinck@ecmwf.int).

6.3 Installation	

The installation process for the IFS RAPS13 benchmark is described in the benchmark
release document.

6.3.1 Prerequisites	

To be able to build and run the RAPS13 release the following facilities are needed:

• C - an ANSI standard C compiler
• Fortran 95 - a Fortran 95 compiler that supports an auto-double (or -r8)

capability
• ksh - Korn shell (ksh93)
• perl - used extensively with generic Makefile to build source libraries
• mpi1 - required for parallel execution

Note that if your Fortran compiler supports the Fortran 2008 standard, then the use of
Fortran coarrays will require specifying the macro option -DCOARRAYS at compile
time. Then at runtime you can decide to use the IFS coarray optimisations by setting

© CRESTA Consortium Page 13 of 23

the LCOARRAYS namelist variable in NAMPAR1 to true, noting that the default is
false.
Installation of the Atlas library is described in a Readme file within the release.

6.3.2 Compilation	
 and	
 installation	

Refer to RAPS13 benchmark release document and Atlas Readme file.

6.4 Application	
 performance	
 overview	

The accuracy of numerical weather prediction crucially depends on the quality of the
forecast model and the initial conditions. Both require the computationally efficient
integration of complex physical process equations at global scale and methods
optimizing memory usage, load balancing and data communication. Future
improvements in predictive skill are expected from increased spatial resolution and
much enhanced observational data usage, both of which impose significant
requirements on code scalability and algorithmic flexibility.

Figure 6.1 shows how scalability of a 10 km IFS global model with 137 atmospheric
levels has improved during the CRESTA project. The details of these improvements
are presented in [1] and summarized below in Table 6.2 for runs using 45,056 AMD
Interlagos cores on HECToR and TITAN. The performance measure is Forecast Days
per Day (FD/D), where the operational requirement for a 10-day forecast is one hour or
240 FD/D. This model case is expected to enter operations at ECMWF in 3Q2015.

Figure 6.1 10 km / L137 global IFS forecast model performance, RAPS12 (CY37R3, on HECToR),
RAPS13 (CY38R2, on TITAN)

Code version

Compiler
Release/System

10 km model
FD/D

Relative
Performance

RAPS12 (CY37R3) base,
linear grid, TSTEP=450s

8.0.3

HECToR
277 1.00

MPI optimizations to
wave model

8.0.3

HECToR
356 1.29

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	
 20	
 40	
 60	
 80	
 100	
 120	

Fo
re
ca
st
	
 D
ay
s	
 /

	
 D
ay
	

#	
 Cores	
 (thousands)	

TITAN	
 RAPS13	
 OCT-­‐14	
 Cubic	
 COAR=T	

TITAN	
 RAPS13	
 FEB-­‐14	
 Cubic	
 COAR=T	

TITAN	
 RAPS13	
 OCT-­‐13	
 Linear	
 COAR=T	

HECToR	
 RAPS12	
 2012	
 Linear	
 COAR=T	

HECToR	
 RAPS12	
 2011	
 Original	
 Linear	

© CRESTA Consortium Page 14 of 23

new compiler release,
improved compiler opts

8.0.6

HECToR
419 1.51

All coarray optimizations
(LT, FT, SL)

8.0.6

HECToR
485 1.75

RAPS13 (CY38R2) base
8.1.5

TITAN
500 est. 1.80 est.

Using cubic grid (still
10km global grid),
TSTEP=600s

8.2.2

TITAN
880 est. 3.17 est.

Final runs OCT-14 with
reduced norms

8.3.0

TITAN
925 3.34

Table 6.2 Evolution of IFS 10 km L137 model performance using 45,056 cores on HECToR and
TITAN

6.5 References	

[1] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3.

[2] Mozdzynski, G., and J.-J. Morcrette, Reorganization of the radiation transfer
calculations in the ECMWF IFS. ECMWF Technical Memorandum No.721, April
2014.http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/701-
800/tm721.pdf

© CRESTA Consortium Page 15 of 23

7 Nek5000	

Application Identification (e.g. Version No)

Nek5000_AMR

Nek5000 version with Adaptive Mesh Refinement

Components: Nek5000 – revision 1020; p4est – version 0.3.4.1;

ParMETIS – version 4.0.3

NekBone_ACC NekBone version v3.1 with OpenACC derivatives

Nek5000_ACC Nek5000 revision 1039 with OpenACC derivatives

Table 7.1 Nek5000 identification

7.1 Licensing	

Main	
 solver	

• Nek5000 is open-source software released under General Public License.
• NekBone is open-source software released under General Public License.

Additional	
 libraries	
 required	
 by	
 Adaptive	
 Mesh	
 Refinement	

• p4est library is free software released under GNU General Public License

version 2.
• ParMETIS is copyrighted by the Regents of the University of Minnesota. It can

be freely used for educational and research purposes by non-profit institutions
and US government agencies only. Other organizations are allowed to use
ParMETIS only for evaluation purposes, and any further uses will require prior
approval. The software may not be sold or redistributed without prior approval.
One may make copies of the software for personal use provided that the copies
are not sold or distributed, and are used under the same terms and conditions.

7.2 Acquisition	

Main	
 solver	

• Nek5000: source code is maintained in a subversion (SVN) repository and can
be downloaded with the SVN client checkout command:

svn co –r rev_number
https://svn.mcs.anl.gov/repos/nek5/ \
 ./nek5_svn

where –r option specifies the revision number to be downloaded. The repository
and downloading instruction can be found on the Nek5000 homepage:
https://nek5000.mcs.anl.gov/index.php/GETNEK

• NekBone: source code is available from Argonne national laboratory webpage,
located at: https://cesar.mcs.anl.gov/content/software/thermal_hydraulics

Additional	
 libraries	
 required	
 by	
 Adaptive	
 Mesh	
 Refinement	

• p4est library: Official stable releases of the source code in the form of Unix

gz.tar -file can be downloaded from the project home page [3]. The p4est
source code contains two necessary libraries sc and p4est.

• ParMetis: ParMETIS's distribution is available as a Unix gz.tar -file. It can be
downloaded from the project home page [4].

Developed	
 tools	

• GenTree: Nek5000 uses relatively simple description of the simulation mesh

included in ###.map and ###.rea or ###.re2 files. However, the p4est library
requires specific information about tree forest structure and connectivity, which
is not directly available in the Nek5000 input files. To extract this information we

© CRESTA Consortium Page 16 of 23

have developed the gentree tool, which, using Nek5000 input files for conformal
mesh, generates ###.tree file in the p4est format. This file replaces ###.map
file. The source code for gentree can be found at:
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_AMR/GenTree

Code	
 modifications	

• Nek5000_AMR: AMR version of Nek5000 is not yet included in the official

repository at Argonne. As the code is under constant development we found the
distribution of complete examples to be the most effective. In this case solver
modifications are distributed together with setup files including mesh and
compilation scripts.

• NekBone_ACC: OpenACC version of NekBone is not yet included in the official
releases at Argonne. As the code is under constant development we found the
distribution of complete examples to be the most effective. In this case solver
modifications are distributed together with setup files including mesh and
compilation scripts.

• Nek5000_ACC: OpenACC version of Nek5000 is not yet included in the official
repository at Argonne. As the code is under constant development we found the
distribution of complete examples to be the most effective. In this case solver
modifications are distributed together with setup files including mesh and
compilation scripts.

Setups	

In all of the setups, solver modifications are distributed together with the setup files
including mesh and compilation scripts.

• Nek5000_AMR: Unix gz.tar -files with working examples can be found under:
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_AMR/Setups

• NekBone_ACC: Unix gz.tar -files with working examples can be found under:
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/NekBone_ACC/

• Nek5000_ACC: Unix gz.tar -files with working examples can be found under:
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_ACC/

Contact	
 people	

• Adam Peplinski (adam@mech.kth.se) – Nek5000_AMR
• Jing Gong (gongjing@kth.se) – NekBone_ACC, Nek5000_ACC

7.3 Installation	

7.3.1 Prerequisites	

Main	
 solver	

• Nek5000 runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray etc.

It was tested with GNU, PGI, Intel and Cray compilers. The installation
procedure is described in [1]. The installation process consists of building the
tools and copying the scripts necessary to create input files for nek5000
simulations. Most of those tools are not necessary for performing the
simulation, but they are important in the preprocessing step. Nek5000 uses
GNU make for compilation and requires Fortran77, C compilers and the MPI
library.

• NekBone runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray
etc. It was tested with GNU, PGI, Intel and Cray compilers. The installation
procedure is described at
https://cesar.mcs.anl.gov/content/software/thermal_hydraulics.
The NekBone benchmark uses GNU make for compilation and requires
Fortran77, C compilers and the MPI library.

Additional	
 libraries	
 required	
 by	
 Adaptive	
 Mesh	
 Refinement	

• p4est library runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray

etc. Within CRESTA project it was tested with GNU, PGI and Intel compilers.
The nstallation procedure is described in the README and INSTALL files

© CRESTA Consortium Page 17 of 23

included in the source code tarball. p4est uses the GNU
autoconf/automake/libtool build system and requires a C compiler and MPI
library for compilation.

• ParMetis have been extensively tested on a number of different parallel
computers. Within the CRESTA project it was tested with GNU, PGI and Intel
compilers. The installation procedure is described in the INSTALL.txt file
included in the source code tarball. ParMetis uses the GNU make tool for
compilation and requires a C compiler and MPI library.

Compilers	
 required	
 by	
 NekBone_ACC	
 and	
 Nek5000_ACC	

A PGI or Cray CCE compiler supporting OpenACC derivatives is required for
NekBone_ACC and Nek5000_ACC. To obtain better performance, the use of the latest
releases, PGI v14.10.0 or Cray CCE v8.4.0, is recommended.
Developed	
 tools	

• GenTree runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray
etc. It was tested with GNU, PGI and Intel compilers. This tool is used in the
preprocessing step. The installation procedure is described in the README file
included in the source code tarball. It uses the GNU make tool for compilation
and requires Fortran77, C compilers and MPI, p4est libraries. This tool is
similar to the genmap tool included in the Nek5000 repository.

Code	
 modifications	

• Nek5000_AMR: the AMR version of Nek5000 requires the source code of the

Nek5000 solver revision 1020, compilers for Fortran77 and C, and MPI, p4est,
ParMetis libraries. It was tested with GNU, PGI and Intel compilers on a Linux
system and Cray XE6.

• NekBone_ACC: the OpenACC version of NekBone requires the source code of
the NekBone solver version 3.1, compilers for Fortran77 and C. It was tested
with PGI and Cray CCE compilers on a Linux system and Cray XK7.

• Nek5000_ACC: the OpenACC version of Nek5000 requires the source code of
the NekBone solver version 3.1, compilers for Fortran77 and C. It was tested
with PGI and Cray CCE compilers on a Linux system and Cray XK7.

7.3.2 Compilation	
 and	
 installation	

Main	
 solver	

• Nek5000: The installation procedure is described in the Nek5000 user guide

[1]. The process consists of building the tools and copying the scripts necessary
to create input files for nek5000 simulations. The source code can be
downloaded with

svn co –r rev_number
https://svn.mcs.anl.gov/repos/nek5/ \
 ./nek5_svn

The shell commands
cd nek5_svn/trunk/tools

maketools all

build the tools and copy them to the generated top level bin directory. In
addition there are a number of scripts located under directory

nek5_svn/trunk/tools/scripts

This can be useful during different simulation stages. For more information
about tools, their installation and preparation of the input files for nek5000
simulations see [2].

NekBone	

• The installation procedure is described in:

© CRESTA Consortium Page 18 of 23

 https://cesar.mcs.anl.gov/content/software/thermal_hydraulics

Additional	
 libraries	
 required	
 by	
 Adaptive	
 Mesh	
 Refinement	

• p4est: The installation procedure is described in the README and INSTALL

files included in the source code tarball. Briefly, the shell commands:
./configure

make

make install

configure, build, and install the package. For more information see INSTALL
file and [3].

• ParMetis: The installation procedure is described in the INSTALL.txt file
included in the source code tarball. ParMetis uses the GNU make tool for
compilation and requires a C compiler and MPI library. Briefly, the shell
commands

make config

make

make install

configure, build, and install this package. For more information see the
INSTALL.txt file and [4].

Developed	
 tools	

• GenTree: The installation procedure is described in the README file included

in the source code tarball. Briefly, the shell commands
make clean

make all

clean the source tree and build this tool. Before executing make src/genconn.h
and Makefile files should be edited. genconn.h contains sizes for static array
allocation (max number of trees, grid dimension and number of passive
scalars). These numbers have to correspond to the values used in the
simulation (SIZE file). In the Makefile information about compilers, include and
library paths must be updated. This tool is similar to the genmap tool included
in Nek5000 repository. For more information see the README file.

Code	
 modifications	

• NekBone_ACC: The installation procedure is described in the README file

included in the source code tarball.
• Nek5000_ACC: The installation procedure is described in the README file

included in the source code tarball.

Setups	

• Nek5000_AMR: Each example setup under

ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_AMR/Setups
contains the complete set of files and scripts to compile and run the given
examples except the Nek5000 code, which has to be downloaded separately.
Although other files usually do not require changes they can be modified or set
up from scratch. To compile and run example setup first static arrays sizes have
to be defined (SIZE file used by Nek5000) and input files have to be generated.
There are number of parameters in SIZE and we refer the reader to
https://nek5000.mcs.anl.gov/index.php/SIZEu for more in-depth description.
We mention only ldim (number of spatial dimensions) and ldimt (maximum
number of T-array fields), which must be consistent with N_DIM and N_NPSCL
in src/nekp4est.h (used by p4est) and genconn.h (part of GenTree source
code). The input files ###.rea, ###.re2 (optionally) and ###.map can be created
with native Nek5000 tools (genbox, prex, genmap, n2to3 …) and next ###.tree

© CRESTA Consortium Page 19 of 23

should be generated with gentree. More information about grid generation and
different tools can be found at
https://nek5000.mcs.anl.gov/index.php/UG
Every example tarball contains:

o Directory structure
§ bin: to store executable nek5000
§ nek: temporary storage for Nek5000 source code revision 1020

(some files overwritten by files from src)
§ obj: to store object files
§ src: nekp4est source code and modified Nek5000 files
§ test: directory containing input files and running script

o Scripts
§ compile_np4est.sh: main compilation script
§ compile.sh, clean.sh: wrappers for fast compilation/cleaning
§ makenek: Nek5000 native compilation script called by

compile.sh
o Files

§ makefile_usr.inc: include file with user makefile definitions
§ README: setup description
§ SIZE: static array definitions for Nek5000

Before compiling, the following files have to be updated:
o compile_np4est.sh

§ NEK_HOME: should point to Nek5000 source code (only release
1020 is supported)

o makenek
§ F77: F77 mpi compiler,
§ CC: C mpi compiler,
§ USR_LFLAGS: path to p4est and ParMetis libraries

o makefile_usr.inc
§ P4EST_HOME: include path for p4est
§ PARMETIS_HOME: include path for ParMetis

o src/nekp4est.h has to be consistent with SIZE

To compile the code, run the compile script. Executable bin/nek5000 and
compilation log compiler.out should be generated. Check log file for errors.
There may be a number of warnings due to inconsistent common block
structures. To run a simulation, move to the test directory, copy the compiled
executable and run the execute script. The execute script may require updating
as the simulation execution method is system-dependent. The number and type
of input/output files depends on the given example and is described in the
README file.

• NekBone_ACC: Each example setup under the directory
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/NekBone_ACC
contains the complete set of files and scripts to compile and run the given
example except the NekBone code, which has to be downloaded separately.
Although other files usually do not require changes they can be modified or set
up from scratch. To compile and run example setup first static arrays sizes have
to be defined (SIZE file used by NekBone) and input files have to be generated.
Every example tarball contains:

o Directory structure
§ src: NekBone files
§ test: directory containing input files and running script

o Script
§ makenek: NekBone native compilation script called by

compile.sh
o Files

§ README: setup description
§ SIZE: static array definitions for NekBone

© CRESTA Consortium Page 20 of 23

Before compiling, the following files have to be updated:
o makenek

§ SOURCE_ROOT: the path to the NekBone source code F77
§ F77: the name of the F77 MPI compiler
§ CC: the name of the C MPI compiler
§ USR_LFLAGS: specify any desired flags
§ IFPGIACC: Uncomment and specify PGI OpenACC derivatives
§ IFCRAYACC: Uncomment and specify Cray OpenACC

derivatives
o SIZE

§ lp: the maximum number of GPU/MPI ranks
§ lelt: the maximum number of element per GPU/MPI ranks

To compile the code, run the compile script. The executable nekbone should be
generated. There may be a number of warnings due to inconsistent common
block structures. To run a simulation, move to the test directory, copy the
compiled executable and run the execute script. The execute script may require
updating as the running method can be system-dependent. The current version
of this script uses the number and type of input/output files depending on the
given example and is described in the README file.

• Nek5000_ACC: Each example setup under
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_ACC
contains the complete set of files and scripts to compile and run the given
example except the Nek5000 code, which has to be downloaded separately.
Although other files usually do not require changes they can be modified or set
up from scratch. To compile and run the example setup static arrays sizes have
to be defined first (SIZE file used by Nek5000) and input files have to be
generated. There are a number of parameters in SIZE and we refer the reader
to
https://nek5000.mcs.anl.gov/index.php/SIZEu for a more in-depth description.
Every example tarball contains:

o Directory structure
§ src: Nek5000 files
§ test: directory containing input files and running script

o Scripts
§ makenek: Nek5000 native compilation script called by

compile.sh
o Files

§ README: setup description
§ SIZE: static array definitions for Nek5000

Before compiling, the following files have to be updated:
o makenek

§ SOURCE_ROOT: the path to the NekBone sourcecodeF77
§ F77: the name of the F77 MPI compiler
§ CC: the name of the C MPI compiler,
§ USR_LFLAGS: specify any desired flags
§ IFPGIACC: Uncomment and specify PGI OpenACC derivatives
§ IFCRAYACC: Uncomment and specify Cray OpenACC

derivatives
o SIZE

§ lp: the maximum number of GPU/MPI ranks
§ lelt: the maximum number of element per GPU/MPI ranks

To compile the code, run the compile script. The executable nek5000 and
compilation log compiler.out should be generated. Check log file for errors.
There may be number of warnings due to inconsistent common block
structures. To run a simulation, move to the test directory, copy the compiled
executable and run the execute script. The execute script may require updating
as the running method can be system-dependent. The current version of this

© CRESTA Consortium Page 21 of 23

script uses the number and type of input/output files dependent on the given
example and is described in the README file.

7.3.3 External	
 links	

The Nek5000 homepage is located at http://nek5000.mcs.anl.gov.

Building and using nek5000 is described at http://nek5000.mcs.anl.gov/index.php/UG

Homepages for p4est and ParMetis are located at http://www.p4est.org/ and
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/ respectively.

7.4 Application	
 performance	
 overview	

In this section, we discuss the achieved performance of the CRESTA modifications of
Nek5000. For a detailed analysis of Nek5000 performance, we refer the reader to
deliverable D6.1.3 [5].

Nek5000_AMR	

Figure 7.1 Two–dimensional cut through the domain of the convected-cone problem showing the
grid structure (black squares) and the passive scalar profile (color scale). Each element (3D cube
depicted by a square) corresponds to the mesh of 12x12x12 grid points.

Within CRESTA we implemented in Nek5000 all the tools necessary to dynamically
modify the mesh structure during the simulation by changing the global number of
elements through h-refinement, see Figure 7.1. This allows for non-conformal meshes,
which add more flexibility to grid generation by removing e.g. the refinement
propagation problem in the conformal meshes which lead to unnecessary elements in
the far-field and to high aspect-ratio elements that are detrimental to iterative solver
performance. It also allows for control of the computational error during the simulation
by using a proper error estimator.

We performed a number of model simulations with the AMR version of Nek5000 based
on the convected-cone example introduced by Gottlieb and Orszag, which is the
passive scalar transport problem. We adopted this example to 3-dimensional
simulations evolving a sphere-shape (strong scaling) or cylinder-shape (weak scaling)
cone according to the energy equation in Nek5000. In all the tests performed, we

© CRESTA Consortium Page 22 of 23

followed advected features in the flow (the cone), which requires continuous
adjustment of the mesh and does not converge to any time independent grid structure.
In our simulations the mesh was regenerated every 50 Nek5000 steps. All runs were
performed on a Cray XE6 system with the core number being power of 2 and ranging
from 2048 up to 32,768. For an example of parallel efficiency related to weak scaling
for a model problem, see Figure 7.2.

Figure 7.2 Parallel efficiency of the simulations without (ε=1.01) and with (AMR) grid adaptation for
non-conformal version of Nek5000.

We found the non-conformal version of Nek5000 to be the most efficiently parallelized
component of our code. The biggest constraint in the parallel scaling comes from the
performance of the grid partitioner showing the partitioning from scratch strategy to be
inefficient. This would not allow for exascale simulations in which advected flow
features are followed, as the mesh requires continuous adjustment and does not
converge to any time-independent grid structure. However, in the stability calculations,
where the final mesh structure can be time-independent, costly AMR with mesh
adaptivity turned on can be used as a pre-processing tool and non-conformal Nek5000
solver can be used during the main simulation.

NekBone_ACC	

Figure 7.3 The weak scaling results on the Titan supercomputer with up to 16,384 GPUs for
NekBone (red line) and in the ideal case (black dashed line).

1 1024 2048 4096 8192 16384
0

200

400

600

800

1000

1200

Number of GPUs

TF
lo

ps

Eff.=74.8%

73.4%

66.7%

59.4%

52.8%

Titan
Ideal

© CRESTA Consortium Page 23 of 23

Within the CRESTA project, NekBone has been ported to multi-GPU systems using
OpenACC compiler directives. The focus of this work is on porting the most time-
consuming routines of the NekBone to a GPU system, i.e. matrix-matrix multiplications.
The optimized version for multi-GPU systems gives a performance of 609.8 Tflops on
16,384 GPUs on Titan, as described in Figure 7.3.

Nek5000_ACC	

Figure 7.4 The strong scalability for Nek5000 using 16th-order polynomial. Total number of grid
points is 5177 M.

Within the CRESTA project, the full Nek5000 code has been ported to a multi-GPU
system using OpenACC compiler directives. The work focused on porting the most
time-consuming parts of Nek5000 to the GPU system, namely the preconditioned
iterative linear solver. The gather-scatter method with MPI operations has been
redesigned in order to decrease the amount of data to transfer between the host and
the accelerator. On 4096 nodes of the Titan supercomputer, the speed-up can be
approach 1.4 times with a16th-order polynomial, see Figure 7.4. A preliminary study
showed that overlapping of GPU kernels with host-accelerator memory transfers could
increase the performance of the OpenACC version of Nek5000. This will be part of
future research.

7.5 References	

[1] Paul Fischer et. al., Nek5000 user guide,

http://www.mcs.anl.gov/~fischer/new.pdf.

[2] Nek5000 wiki page, https://nek5000.mcs.anl.gov/index.php/UG

[3] p4est home page, http://www.p4est.org/

[4] ParMetis home page,
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

[5] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3.

0	

2	

4	

6	

8	

10	

12	

14	

16	

4096	
 8192	
 16384	

Ti
m
e(
s)
/s
te
p	

Number	
 of	
 nodes/GPUs	

OpenACC+MPI	

MPI	

