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1 Executive	
  summary	
  
This deliverable, “D6.5 Peta to exascale enabled applications (Software)”, describes 
the status of the CRESTA applications at the end of the project. In short, the licensing 
policy, availability and the performance improvements achieved during CRESTA for 
each of the applications are: 

ELMFIRE: Proprietary license, however access available on request. Contact details to 
use when applying for a license are given in the Elmfire section of this document. A 
domain decomposition version of ELMFIRE has been developed during CRESTA, 
resulting in a significant reduction in memory consumption.  

GROMACS: Licensed under LGPLv2 and available in a public code repository. 
CRESTA modifications included in the main trunk. Performance and scalability 
(through ensemble computations) have been significantly improved during CRESTA. 

HemeLB: Licensed under GPLv3 and available in a public code repository. CRESTA 
modifications included in the main trunk. Both performance and scalability have been 
significantly improved during CRESTA.  

IFS: Proprietary license, contact details for applying for a license given in the IFS 
section of this document. CRESTA modifications included in the main trunk. Both 
performance and scalability have been significantly improved during CRESTA.  

NEK5000: Licensed under GPLv3 and available in a public code repository. CRESTA 
modifications for OpenACC included in the main trunk, AMR modifications to be 
included in the trunk as soon as scalable pressure preconditioner has been 
implemented. By using OpenACC to offload computations to GPGPUs, performance 
improved during CRESTA.  

OpenFOAM: Licensed under GPLv3 and available in a public code repository. 
Development effort ceased after M24. No improvements made to the code trunk during 
CRESTA.  

Note that this document is closely linked to CRESTA deliverable “D6.1.3 Roadmap to 
exascale (update 2)“. D6.1.3 contains thorough performance analysis and a roadmap 
to reach exascale performance. This document considers the practical issues, such as 
how and from where to obtain the source code and how to apply or use the 
modifications implemented during CRESTA with the application. 



 

© CRESTA Consortium   Page 2 of 23 

  

2 Introduction	
  
This document contains a description of the updated CRESTA applications that were 
successfully improved during the project (ELMFIRE, GROMACS, HemeLB, IFS and 
Nek5000). As improving the performance of OpenFOAM was deemed to require almost 
a complete rewrite of the whole application, its development within the project was not 
continued after M24. 

For each application included we give either instructions or links to instructions for 
building the application with modifications done during the project in place. Also 
included are performance and scalability metrics to assess the achieved performance 
improvements. For detailed analysis of application performance and scalability as well 
as a roadmap for future improvements, see CRESTA deliverable “D6.1.3 Roadmap to 
exascale (update 2)“.  

The functionality and research goals of the applications can be summarized as follows: 

ELMFIRE: is a gyro kinetic particle-in-cell code that simulates movement and 
interaction between high-speed particles in a torus-shaped geometry on a three 
dimensional grid. The particles are held together by an external magnetic field. The 
objective is to simulate significant portions of large-scale fusion reactors like JET or 
ITER. 

GROMACS: is a molecular dynamics code that is extensively used for simulation of 
biomolecular systems. Useful investigation of this kind of system is typically limited by 
computational capacity. The limitations relate to both the system sizes and in particular 
the time duration of the processes which are of interest. Efficient implementation of 
ensemble simulations is also needed in order to achieve statistical validity. 

HemeLB: is intended to form part of a clinically-deployed exascale virtual physiological 
human. HemeLB simulates blood flow in measured blood vessel geometries. The 
objective is to develop a clinically useful exascale tool. 

IFS: is the production weather forecasting application used at the European Centre for 
Medium Range Weather Forecasts (ECMWF). The objective is to develop more 
reliable 10-day weather forecasts that can be run in an hour or less. 

NEK5000: is an open-source code for the simulation of incompressible flow in complex 
geometries. Simulation of turbulent flow is of one of the major objectives of NEK5000. 

2.1 Glossary	
  of	
  Acronyms	
  
ACML AMD Core Math Library 

AVX Advanced Vector Extensions 

BSD Berkeley Software Distribution 

CAF Coarray Fortran 

CUDA Compute Unified Device Architecture 

DLR Deutschen Zentrums für Luft- und Raumfahrt 

ECMWF European Centre for Medium-Range Weather Forecasts 

EPCC Edinburgh Parallel Computing Centre 

FFT Fast Fourier Transform 

FFTW Fastest Fourier Transform in the West 

FTP File Transfer Protocol 
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GGI General Graphics Interface 

GNU GNU's Not Unix! 

GPL GNU General Public License 

GPU Graphics Processing Unit 

GSL Gnu Scientific Library 

HDF5 Hierarchical Data Format 

KTH Kungliga Tekniska Högskolan 

LGPL GNU Lesser General Public License 

MKL Math Kernel Library 

MPI Message Passing Interface 

NDA Non-disclosure agreement 

OpenMP Open Multiprocessing 

PESSL Parallel Engineering and Scientific Software Library 

PETc Portable, Extensible Toolkit for Scientific Computation 

PME Particle Mesh Ewald 

POSIX Portable Operating System Interface 

PRACE Partnership for Advanced Computing in Europe 

S3L Sun Scalable Scientific Subroutine Library 

SVN Subversion 

UCL University College London 

USTUTT University of Stuttgart 

XML Extensible Markup Language 
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3 Elmfire	
  
Application Identification (e.g. Version No) 

Elmfire version 12 

Table 3.1 Elmfire identification 

3.1 Licensing	
  
The code is not licensed, but access to the code can be obtained on request. Public 
licensing of the code is under consideration once the remaining changes have been 
implemented. 	
  
3.2 Acquisition	
  
The application is not publicly available, but can be accessed on request for 
appropriate scientific purposes.  

Contact	
  person	
  
Timo Kiviniemi (timo.kiviniemi@aalto.fi), Department of Applied Physics, Aalto 
University School of Science, P.O.Box 14100, FI-00076 AALTO Finland 

3.3 Installation	
  
The Makefile includes options for different platforms. 

3.3.1 Prerequisites	
  
The code has been used on CRAY, BULL, IBM and INTEL/AMD architectures. 
The code can utilize the PETSc/PESSL and ACML/MKL/GSL/ESSL libraries. The code 
is purely MPI-based and has been compiled using the INTEL, Cray and PGI compilers. 

3.3.2 Compilation	
  and	
  installation	
  
Different options exist within the Makefile for different platforms. 

3.3.3 External	
  links	
  
None 

3.4 Application	
  performance	
  overview	
  
The main challenge for this code was memory consumption and one of the key goals 
for CRESTA was to develop a domain decomposition version of the code. This 
development has been achieved and performance runs have been carried out with this 
code on half a billion particles on 4096 cores (see figure below). These results 
demonstrate that memory consumption per core is currently almost proportional to the 
number of particles, a significant achievement and an original objective set within 
CRESTA. This is described in more detail in Deliverable D6.1.3 [1]. 
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Figure 3.1 Elmfire memory scalability per core in a weak scaling test for a model problem 

3.5 References	
  
[1] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3.  
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4 Gromacs	
  
Application Identification (e.g. Version No) 

Gromacs 4.6, 5.0 (Molecular Dynamics) 

Table 4.1 Gromacs identification 

4.1 Licensing	
  
GROMACS is free software, distributed under the GNU Lesser General Public License 
(LGPL) Version 2.1. 

4.2 Acquisition	
  
Released versions of the code can be freely downloaded without registration from 
http://www.gromacs.org/Downloads. The source distribution can be used to download 
and run the tests automatically, or they can be obtained separately by following the 
instructions at http://www.gromacs.org/Documentation/Installation_Instructions#testing-
gromacs-for-correctness. 

The main development version of Gromacs is also publicly accessible as a git 
repository from either the Gromacs servers 
 git clone git://git.gromacs.org/gromacs.git 

or from Github 
 git clone https://github.com/gromacs/gromacs.git 

 

4.3 Installation	
  
4.3.1 Prerequisites	
  
Gromacs 5.0 requires 

• both C99 and C++98 compilers (and is extremely compiler-portable), 

• CMake version 2.8.8 or newer, 

• for best performance with PME, either FFTW or MKL is required; FFTW can be 
downloaded and built automatically, as shown above, and 

• for builds that target accelerators, you should honor the requirements of that 
platform, e.g. nvcc supports only specific versions of named compilers for GPU 
builds. (Our experience is that you can use other compilers if you manually 
circumvent the checks, however.) 

On BlueGene/Q, either XL or bgclang compilers may be used. 

4.3.2 Compilation	
  and	
  installation	
  
For example, on everyday x86 machines with MPI and GPUs, where the build host is 
identical to the execution host, having downloaded a source distribution (or made a git 
clone), one can use 
tar xfz gromacs-5.0.2.tar.gz 

cd gromacs-5.0.2 

mkdir build 

cd build 

cmake .. -DGMX_BUILD_OWN_FFTW=ON -
DREGRESSIONTEST_DOWNLOAD=ON -DGMX_GPU=on -DGMX_MPI=on 

make 
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make check 

sudo make install 

source /usr/local/gromacs/bin/GMXRC 

Any released version of any of the major compilers may be used, although the most 
recent version should be preferred. Best results are normally obtained with gcc. 

Standard CMake behaviour is fully supported, including the use of 
CMAKE_INSTALL_PREFIX, CMAKE_PREFIX_PATH, BUILD_SHARED_LIBRARIES, 
CMAKE_C_COMPILER, CMAKE_CXX_COMPILER. 

4.3.3 External	
  links	
  
Up-to-date Gromacs installation instructions may be found at 
http://www.gromacs.org/Documentation/Installation_Instructions. Detailed instructions 
for BlueGene/Q and Cray systems can be found there. 

4.4 Application	
  performance	
  overview	
  
The improvements implemented during CRESTA have greatly enhanced the simulation throughput 
throughput scientists can obtain with Gromacs. Strong scaling is the major design target for MD 
target for MD simulation software, because scientific quality is normally in direct proportion to the 
proportion to the amount of sampling conducted. Not only are CUDA, BlueGene/Q, and K-computer 
K-computer architectures now fully supported, but their implementation and supporting 
infrastructure are designed to be performance portable, to the extent we can anticipate hardware 
hardware trends. Even on x86 hardware that was available three years ago, the performance of 
performance of Gromacs 4.6 is around 20% faster than that of Gromacs 4.5 on the same hardware 
same hardware (through better use of SIMD of that era, and elimination of redundant computation 
computation in inner kernels), and the enhancements to strong scaling improve total performance 
performance by more than a factor of 2. Changes to x86 scaling performance can be seen in 
seen in 
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Figure 4.1. Further information is available in Deliverables D6.1.3 [3] and D6.4 [4]. 

 
Figure 4.1 Scaling performance of Gromacs 4.5, 4.6 and 5.0 on Sandy Bridge (SNB) and Haswell 
(HSW) x86 platforms. 

The completion of the related Copernicus project [2] makes it straightforward to 
execute elaborate ensemble-parallelism schemes using multiple Gromacs simulations 
as the computational workhorse. For the first time, it is easy for scientists to make 
effective use of Gromacs to implement advanced sampling algorithms at full scale on 
any current petascale machine. 

4.5 References	
  
[2] Pronk et al., “Copernicus: a new paradigm for parallel adaptive molecular 

dynamics”, SC11 High Performance Computing, Networking, Storage and 
Analysis (SC), 2011 International Conference for. IEEE, 2011. 

[3] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3. 

[4] Exemplar scientific simulations, CRESTA Deliverable D6.4. 
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5 HemeLB	
  
HemeLB is a software package for modelling and simulation of haemodynamics in 
sparse geometries. To date, it has been mainly applied to the simulation of complex 
cerebrovascular networks and cerebrovascular malformations such as aneurysms. 
HemeLB includes: a) a GUI for simulation definition, b) a highly-optimised parallel 
lattice-Boltzmann (LB) solver including different LB collision operators, boundary 
conditions, and rheology models, c) a visualisation client allowing real-time 
visualisation and simulation steering, and d) a number of postprocessing tools. The 
package is currently developed at the Centre for Computational Science, UCL.  

Application Identification (e.g. Version No) 

HemeLB Commit: 4eefc9f6b55a29d8ec26f7b6de1605fff6357e60 
Table 5.1 HemeLB identification 

5.1 Licensing	
  
HemeLB is available under GPL, version 3. 

5.2 Acquisition	
  
Public repository is hosted at http://ccs.chem.ucl.ac.uk/hemelb. 

5.3 Installation	
  
5.3.1 Prerequisites	
  
HemeLB requires the following to be present on a system to run simulations: 

• C++ - a C++ compiler compatible with C++ 2003 or better 
o Supporting alignment control with __align__ or similar in order to build 

dependencies 
o Including C++ standard library 
o Tested with Cray, Intel, and Gnu 

• CMake – version 2.8.6 or better is required 
• POSIX – environment must conform to POSIX standard. Compilation has been 

tested with Debian linux, Mac OSX Snow Leopard, and various PRACE 
machines. 

• MPI – required for parallelism. HemeLB has been tested with openmpi, mpich 
and cray MPI. 

• MPI_IO – required for parallel I/O 
• Python - Optional, needed only for validation of regression tests. Not needed 

for production. Has an additional NumPy-package dependency.  
HemeLB will automatically download and install the following dependencies if not 
present: 

• Google CTemplate – For details see http://code.google.com/p/ctemplate 
• Boost 
• CPPUnit - Optional, needed only for unit testing, not in production use. For 

details see http://sourceforge.net/projects/cppunit/ 
• MPWide - Optional, needed only for multiscale simulations. For details see 

http://castle.strw.leidenuniv.nl/software/mpwide.html 
• ZLib – Data compression library, see http://www.zlib.net/ 
• TinyXML – For details see http://www.grinninglizard.com/tinyxml/ 
• Parmetis – Parallel graph partitioning package. For details see 

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview 

5.3.2 Compilation	
  and	
  installation	
  
With your HemeLB checkout, run: 
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mkdir build 
cd build 
cmake –DCMAKE_INSTALL_DIR=path_to_install_to 
make 

5.3.3 External	
  links	
  
Detailed information on installation can be found in hemelb/README and on the 
HemeLB wiki at http://pauli.chem.ucl.ac.uk/trac, password restricted, access available 
on request by members of the CRESTA consortium. 

5.4 Application	
  performance	
  overview	
  
In this section, we show the development of the maximum achieved performance of 
HemeLB over the years in Figure 5.1, as published in papers and technical reports. For 
a detailed analysis of HemeLB performance, see [4]. 

At the start of the CRESTA project, in 2011, we were able to obtain a performance of 
9.1 billion site updates per second using 12,288 cores. As a result of our collaborations 
in CRESTA, we now have been able to obtain a performance of 153 billion site updates 
per second using 49,152 cores in 2014. This constitutes a performance improvement of 
a factor of 16.8, whereas Moore's law would predict a performance improvement of 
approximately a factor of 2.8 over that period. 

 
Figure 5.1 Obtained maximum performance achieved with HemeLB between 2007 and 2014. All 
improvements after 2011 were achieved during the CRESTA project. The sparsity of the data sets is 
roughly indicated by the color of the circle (very sparse is red, non-sparse cylinder data sets are 
blue), and the core count used by the size of the circle 

Although the maximum obtained performance is a good indicator of how HemeLB is 
able to make more efficient use of high-end computing resources, it is only one of two 
important performance aspects for scientific users in the field. This is because in 
lattice-Boltzmann simulations the number of time steps required to reach convergence 
scales along with the size of the system modelled. As such, it becomes increasingly 
important for larger problems to measure the speed of our simulations, measured in 
time steps resolved per second. In Figure 5.2 we present this measure for all the runs 
which we previously presented in Figure 5.1. We find that our efforts within CRESTA 
have allowed us to simulate larger geometries than ever, and that we have managed to 
increase the rate of simulation to almost 2000 time steps per second. We believe these 
benefits are mainly results from our single-core optimizations, our improvements in 
domain decomposition, and the advent of newer and faster architectures such as Intel 
Ivy Bridge. 

For very large data sets (e.g., the huge cylinder), however, we do observe a lower 
speed of about 600 time steps per second. Indeed, one of the major future challenges 
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for HemeLB will be to improve this measure for large problems, allowing us to reach 
convergence for these simulations within reasonable time spans. 

 
Figure 5.2 Obtained maximum number of time steps per second achieved, as a function of the 
problem size in the simulation (measured in number of lattice sites). 

The work done in CRESTA has had major benefits for the domain-specific research 
activities with HemeLB, raising its profile in the scientific community. Primarily we have 
been able to model larger and more complicated geometries, and greatly reduce the 
time-to-completion for our simulations. As examples of the scientific impact using 
HemeLB, we have been able to publish new advances in high-profile domain journals 
such as J. R. Soc. Interface [1], Physics Review E [2] and Interface Focus [3]. 

5.5 References	
  
[1]  “Computer simulations reveal complex distribution of haemodynamic forces in 

a mouse retina model of angiogenesis”, M.O. Bernabeu, C.A. Franco, M. Jones, 
J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, J. Hetherington, H. Gerhardt, 
P.V. Coveney, J. R. Soc. Interface (in press), arXiv preprint arXiv:1311.1640, 
2013. 

[2] “Choice of boundary condition for lattice-Boltzmann simulation of moderate 
Reynolds number flow in complex domains”, R.W. Nash, H.B. Carver, M.O. 
Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney, Physics Review 
E 89, 023033, 2014. 

[3] “Impact of blood rheology on wall shear stress in a model of the middle cerebral 
artery”, M.O. Bernabeu, R.W. Nash, D. Groen, H.B. Carver, J. Hetherington, T. 
Krüger, P.V. Coveney, Interface focus 3 (2), 20120094, 2013. 

[4] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3. 
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6 IFS	
  
The Integrated Forecasting System (IFS) is the production numerical weather forecast 
application at ECMWF. The IFS RAPS13 benchmark release contains a number of 
model cases, ranging from a small T159 model (125 km global resolution) to a large 
T3999 model (5 km global resolution). 

The Atlas library is a framework for unstructured meshes on the sphere (including 
parallelization) being used in the development of an alternative dynamical core option 
to the spectral transform method used today in IFS. Atlas was developed within the 
CRESTA project. A stand-alone benchmark case is provided for a simple gradient 
computation based on a vertex-centered finite volume scheme, which is representative 
of a communicating kernel with nearest neighbor overlap regions. 

Application Identification (e.g. Version No) 

IFS RAPS13, ECMWF internal cycle 38R2 

Atlas library Pre-release version 0.3 

Table 6.1 IFS and Atlas identification 

6.1 Licensing	
  
IFS software (RAPS13) is available solely for benchmarking purposes and requires a 
license from ECMWF. To request a license for RAPS13 IFS software please contact 
Isabella.Weger@ecmwf.int, Deputy Director of Computing at ECMWF. The license for 
IFS software prohibits distribution to a 3rd party. 

The Atlas library is available under the conditions of an Apache 2.0 license. 

6.2 Acquisition	
  
Upon receipt of a signed license by ECMWF, details for downloading (ftp 
address/password), building and running the IFS RAPS13 benchmark will be provided 
by email. These instructions are contained in a benchmark release document (14 
pages).  

The contact person for the IFS RAPS13 benchmark is George Mozdzynski 
(George.Mozdzynski@ecmwf.int). 

The contact person for the Atlas library is Willem Deconinck 
(Willem.Deconinck@ecmwf.int). 

6.3 Installation	
  
The installation process for the IFS RAPS13 benchmark is described in the benchmark 
release document.  

6.3.1 Prerequisites	
  
To be able to build and run the RAPS13 release the following facilities are needed: 

• C - an ANSI standard C compiler 
• Fortran 95 - a Fortran 95 compiler that supports an auto-double (or -r8) 

capability 
• ksh - Korn shell (ksh93) 
• perl - used extensively with generic Makefile to build source libraries 
• mpi1 - required for parallel execution 

Note that if your Fortran compiler supports the Fortran 2008 standard, then the use of 
Fortran coarrays will require specifying the macro option -DCOARRAYS at compile 
time. Then at runtime you can decide to use the IFS coarray optimisations by setting 
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the LCOARRAYS namelist variable in NAMPAR1 to true, noting that the default is 
false. 
Installation of the Atlas library is described in a Readme file within the release. 

6.3.2 Compilation	
  and	
  installation	
  
Refer to RAPS13 benchmark release document and Atlas Readme file. 

6.4 Application	
  performance	
  overview	
  
The accuracy of numerical weather prediction crucially depends on the quality of the 
forecast model and the initial conditions. Both require the computationally efficient 
integration of complex physical process equations at global scale and methods 
optimizing memory usage, load balancing and data communication. Future 
improvements in predictive skill are expected from increased spatial resolution and 
much enhanced observational data usage, both of which impose significant 
requirements on code scalability and algorithmic flexibility. 

Figure 6.1 shows how scalability of a 10 km IFS global model with 137 atmospheric 
levels has improved during the CRESTA project. The details of these improvements 
are presented in [1] and summarized below in Table 6.2 for runs using 45,056 AMD 
Interlagos cores on HECToR and TITAN. The performance measure is Forecast Days 
per Day (FD/D), where the operational requirement for a 10-day forecast is one hour or 
240 FD/D. This model case is expected to enter operations at ECMWF in 3Q2015. 

 
Figure 6.1 10 km / L137 global IFS forecast model performance, RAPS12 (CY37R3, on HECToR), 
RAPS13 (CY38R2, on TITAN) 
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Relative 
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RAPS12 (CY37R3) base, 
linear grid, TSTEP=450s 

8.0.3 

HECToR 
277 1.00 

MPI optimizations to 
wave model 

8.0.3 
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new compiler release, 
improved compiler opts 

8.0.6 

HECToR 
419 1.51 

All coarray optimizations 
(LT, FT, SL) 

8.0.6 

HECToR 
485 1.75 

RAPS13  (CY38R2) base 
8.1.5 

TITAN 
500 est. 1.80 est. 

Using cubic grid (still 
10km global grid), 
TSTEP=600s 

8.2.2 

TITAN 
880 est. 3.17 est. 

Final runs OCT-14 with 
reduced norms 

8.3.0 

TITAN 
925 3.34 

Table 6.2  Evolution of IFS 10 km L137 model performance using 45,056 cores on HECToR and 
TITAN 

6.5 References	
  
[1] Roadmap to exascale (update 2), CRESTA Deliverable D6.1.3. 

[2] Mozdzynski, G., and J.-J. Morcrette, Reorganization of the radiation transfer 
calculations in the ECMWF IFS. ECMWF Technical Memorandum No.721, April 
2014.http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/701-
800/tm721.pdf 
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7 Nek5000	
  
Application Identification (e.g. Version No) 

Nek5000_AMR 

Nek5000 version with Adaptive Mesh Refinement 

Components: Nek5000 – revision 1020; p4est – version 0.3.4.1;  

ParMETIS – version 4.0.3 

NekBone_ACC  NekBone version v3.1 with OpenACC derivatives  

Nek5000_ACC Nek5000 revision 1039 with OpenACC derivatives 

Table 7.1 Nek5000 identification 

7.1 Licensing	
  
Main	
  solver	
  

• Nek5000 is open-source software released under General Public License. 
• NekBone is open-source software released under General Public License. 

Additional	
  libraries	
  required	
  by	
  Adaptive	
  Mesh	
  Refinement	
  
• p4est library is free software released under GNU General Public License 

version 2. 
• ParMETIS is copyrighted by the Regents of the University of Minnesota. It can 

be freely used for educational and research purposes by non-profit institutions 
and US government agencies only. Other organizations are allowed to use 
ParMETIS only for evaluation purposes, and any further uses will require prior 
approval. The software may not be sold or redistributed without prior approval. 
One may make copies of the software for personal use provided that the copies 
are not sold or distributed, and are used under the same terms and conditions. 

7.2 Acquisition	
  
Main	
  solver	
  

• Nek5000: source code is maintained in a subversion (SVN) repository and can 
be downloaded with the SVN client checkout command: 

svn co –r rev_number 
https://svn.mcs.anl.gov/repos/nek5/ \ 
    ./nek5_svn 

where –r option specifies the revision number to be downloaded. The repository 
and downloading instruction can be found on the Nek5000 homepage: 
https://nek5000.mcs.anl.gov/index.php/GETNEK 

• NekBone: source code is available from Argonne national laboratory webpage, 
located at: https://cesar.mcs.anl.gov/content/software/thermal_hydraulics 

Additional	
  libraries	
  required	
  by	
  Adaptive	
  Mesh	
  Refinement	
  
• p4est library: Official stable releases of the source code in the form of Unix 

gz.tar -file can be downloaded from the project home page [3]. The p4est 
source code contains two necessary libraries sc and p4est. 

• ParMetis: ParMETIS's distribution is available as a Unix gz.tar -file. It can be 
downloaded from the project home page [4]. 

Developed	
  tools	
  
• GenTree: Nek5000 uses relatively simple description of the simulation mesh 

included in ###.map and ###.rea or ###.re2 files. However, the p4est library 
requires specific information about tree forest structure and connectivity, which 
is not directly available in the Nek5000 input files. To extract this information we 
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have developed the gentree tool, which, using Nek5000 input files for conformal 
mesh, generates ###.tree file in the p4est format. This file replaces ###.map 
file. The source code for gentree can be found at: 
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_AMR/GenTree 

Code	
  modifications	
  
• Nek5000_AMR: AMR version of Nek5000 is not yet included in the official 

repository at Argonne. As the code is under constant development we found the 
distribution of complete examples to be the most effective. In this case solver 
modifications are distributed together with setup files including mesh and 
compilation scripts. 

• NekBone_ACC: OpenACC version of NekBone is not yet included in the official 
releases at Argonne. As the code is under constant development we found the 
distribution of complete examples to be the most effective. In this case solver 
modifications are distributed together with setup files including mesh and 
compilation scripts. 

• Nek5000_ACC: OpenACC version of Nek5000 is not yet included in the official 
repository at Argonne. As the code is under constant development we found the 
distribution of complete examples to be the most effective. In this case solver 
modifications are distributed together with setup files including mesh and 
compilation scripts. 

Setups	
  
In all of the setups, solver modifications are distributed together with the setup files 
including mesh and compilation scripts. 

• Nek5000_AMR: Unix gz.tar -files with working examples can be found under: 
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_AMR/Setups 

• NekBone_ACC: Unix gz.tar -files with working examples can be found under: 
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/NekBone_ACC/ 

• Nek5000_ACC: Unix gz.tar -files with working examples can be found under: 
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_ACC/ 

Contact	
  people	
  
• Adam Peplinski (adam@mech.kth.se) – Nek5000_AMR 
• Jing Gong (gongjing@kth.se) – NekBone_ACC, Nek5000_ACC 

7.3 Installation	
  
7.3.1 Prerequisites	
  

Main	
  solver	
  
• Nek5000 runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray etc. 

It was tested with GNU, PGI, Intel and Cray compilers. The installation 
procedure is described in [1]. The installation process consists of building the 
tools and copying the scripts necessary to create input files for nek5000 
simulations. Most of those tools are not necessary for performing the 
simulation, but they are important in the preprocessing step. Nek5000 uses 
GNU make for compilation and requires Fortran77, C compilers and the MPI 
library. 

• NekBone runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray 
etc. It was tested with GNU, PGI, Intel and Cray compilers. The installation 
procedure is described at  
https://cesar.mcs.anl.gov/content/software/thermal_hydraulics.  
The NekBone benchmark uses GNU make for compilation and requires 
Fortran77, C compilers and the MPI library. 

Additional	
  libraries	
  required	
  by	
  Adaptive	
  Mesh	
  Refinement	
  
• p4est library runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray 

etc. Within CRESTA project it was tested with GNU, PGI and Intel compilers. 
The nstallation procedure is described in the README and INSTALL files 
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included in the source code tarball. p4est uses the GNU 
autoconf/automake/libtool build system and requires a C compiler and MPI 
library for compilation.  

• ParMetis have been extensively tested on a number of different parallel 
computers. Within the CRESTA project it was tested with GNU, PGI and Intel 
compilers. The installation procedure is described in the INSTALL.txt file 
included in the source code tarball. ParMetis uses the GNU make tool for 
compilation and requires a C compiler and MPI library. 
 

Compilers	
  required	
  by	
  NekBone_ACC	
  and	
  Nek5000_ACC	
  
A PGI or Cray CCE compiler supporting OpenACC derivatives is required for 
NekBone_ACC and Nek5000_ACC. To obtain better performance, the use of the latest 
releases, PGI v14.10.0 or Cray CCE v8.4.0, is recommended. 
Developed	
  tools	
  

• GenTree runs under Linux or any Unix-like OS such as Mac, AIX, BG, Cray 
etc.  It was tested with GNU, PGI and Intel compilers. This tool is used in the 
preprocessing step. The installation procedure is described in the README file 
included in the source code tarball. It uses the GNU make tool for compilation 
and requires Fortran77, C compilers and MPI, p4est libraries. This tool is 
similar to the genmap tool included in the Nek5000 repository. 

Code	
  modifications	
  
• Nek5000_AMR: the AMR version of Nek5000 requires the source code of the 

Nek5000 solver revision 1020, compilers for Fortran77 and C, and MPI, p4est, 
ParMetis libraries. It was tested with GNU, PGI and Intel compilers on a Linux 
system and Cray XE6. 

• NekBone_ACC: the OpenACC version of NekBone requires the source code of 
the NekBone solver version 3.1, compilers for Fortran77 and C. It was tested 
with PGI and Cray CCE compilers on a Linux system and Cray XK7. 

• Nek5000_ACC: the OpenACC version of Nek5000 requires the source code of 
the NekBone solver version 3.1, compilers for Fortran77 and C. It was tested 
with PGI and Cray CCE compilers on a Linux system and Cray XK7. 
 

7.3.2 Compilation	
  and	
  installation	
  

Main	
  solver	
  
• Nek5000: The installation procedure is described in the Nek5000 user guide 

[1]. The process consists of building the tools and copying the scripts necessary 
to create input files for nek5000 simulations. The source code can be 
downloaded with 

svn co –r rev_number 
https://svn.mcs.anl.gov/repos/nek5/  \ 
        ./nek5_svn 

The shell commands 
cd nek5_svn/trunk/tools 

maketools all 

build the tools and copy them to the generated top level bin directory. In 
addition there are a number of scripts located under directory 

nek5_svn/trunk/tools/scripts  

This can be useful during different simulation stages. For more information 
about tools, their installation and preparation of the input files for nek5000 
simulations see [2]. 

NekBone	
  
• The installation procedure is described in: 



 

© CRESTA Consortium   Page 18 of 23 

 

                 https://cesar.mcs.anl.gov/content/software/thermal_hydraulics 

 

Additional	
  libraries	
  required	
  by	
  Adaptive	
  Mesh	
  Refinement	
  
• p4est: The installation procedure is described in the README and INSTALL 

files included in the source code tarball. Briefly, the shell commands: 
./configure 

make 

make install 

configure, build, and install the package. For more information see INSTALL 
file and [3].  

• ParMetis: The installation procedure is described in the INSTALL.txt file 
included in the source code tarball. ParMetis uses the GNU make tool for 
compilation and requires a C compiler and MPI library. Briefly, the shell 
commands 

make config 

make 

make install 

configure, build, and install this package. For more information see the 
INSTALL.txt file and [4]. 

Developed	
  tools	
  
• GenTree: The installation procedure is described in the README file included 

in the source code tarball. Briefly, the shell commands  
make clean  

make all 

clean the source tree and build this tool. Before executing make src/genconn.h 
and Makefile files should be edited. genconn.h contains sizes for static array 
allocation (max number of trees, grid dimension and number of passive 
scalars). These numbers have to correspond to the values used in the 
simulation (SIZE file). In the Makefile information about compilers, include and 
library paths must be updated. This tool is similar to the genmap tool included 
in Nek5000 repository. For more information see the README file. 

Code	
  modifications	
  
• NekBone_ACC: The installation procedure is described in the README file 

included in the source code tarball. 
• Nek5000_ACC: The installation procedure is described in the README file 

included in the source code tarball.  

Setups	
  
• Nek5000_AMR: Each example setup under 

ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_AMR/Setups 
contains the complete set of files and scripts to compile and run the given 
examples except the Nek5000 code, which has to be downloaded separately. 
Although other files usually do not require changes they can be modified or set 
up from scratch. To compile and run example setup first static arrays sizes have 
to be defined (SIZE file used by Nek5000) and input files have to be generated. 
There are number of parameters in SIZE and we refer the reader to 
https://nek5000.mcs.anl.gov/index.php/SIZEu for more in-depth description.  
We mention only ldim (number of spatial dimensions) and ldimt (maximum 
number of T-array fields), which must be consistent with N_DIM and N_NPSCL 
in src/nekp4est.h (used by p4est) and genconn.h (part of GenTree source 
code). The input files ###.rea, ###.re2 (optionally) and ###.map can be created 
with native Nek5000 tools (genbox, prex, genmap, n2to3 …) and next ###.tree 
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should be generated with gentree. More information about grid generation and 
different tools can be found at 
https://nek5000.mcs.anl.gov/index.php/UG 
Every example tarball contains: 

o Directory structure 
§ bin: to store executable nek5000 
§ nek: temporary storage for Nek5000 source code revision 1020 

(some files overwritten by files from src) 
§ obj: to store object files 
§ src: nekp4est source code and modified Nek5000 files 
§ test: directory containing input files and running script 

o Scripts 
§ compile_np4est.sh: main compilation script 
§ compile.sh, clean.sh: wrappers for fast compilation/cleaning 
§ makenek: Nek5000 native compilation script called by 

compile.sh 
o Files 

§ makefile_usr.inc: include file with user makefile definitions 
§ README: setup description 
§ SIZE: static array definitions for Nek5000 

Before compiling, the following files have to be updated: 
o compile_np4est.sh 

§ NEK_HOME: should point to Nek5000 source code (only release 
1020 is supported) 

o makenek 
§ F77: F77 mpi compiler, 
§ CC: C mpi compiler,  
§ USR_LFLAGS: path to p4est and ParMetis libraries 

o makefile_usr.inc 
§ P4EST_HOME: include path for p4est 
§ PARMETIS_HOME: include path for ParMetis 

o src/nekp4est.h has to be consistent with SIZE 

To compile the code, run the compile script. Executable bin/nek5000 and 
compilation log compiler.out should be generated. Check log file for errors. 
There may be a number of warnings due to inconsistent common block 
structures. To run a simulation, move to the test directory, copy the compiled 
executable and run the execute script. The execute script may require updating 
as the simulation execution method is system-dependent. The number and type 
of input/output files depends on the given example and is described in the 
README file.  

• NekBone_ACC: Each example setup under the directory 
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/NekBone_ACC 
contains the complete set of files and scripts to compile and run the given 
example except the NekBone code, which has to be downloaded separately. 
Although other files usually do not require changes they can be modified or set 
up from scratch. To compile and run example setup first static arrays sizes have 
to be defined (SIZE file used by NekBone) and input files have to be generated.  
Every example tarball contains: 

o Directory structure 
§ src: NekBone files 
§ test: directory containing input files and running script 

o Script 
§ makenek: NekBone native compilation script called by 

compile.sh 
o Files 

§ README: setup description 
§ SIZE: static array definitions for NekBone 
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Before compiling, the following files have to be updated: 
o makenek 

§ SOURCE_ROOT: the path to the NekBone source code F77 
§ F77: the name of the F77 MPI compiler 
§ CC: the name of the C MPI compiler  
§ USR_LFLAGS: specify any desired flags 
§ IFPGIACC: Uncomment and specify PGI OpenACC derivatives 
§ IFCRAYACC: Uncomment and specify Cray OpenACC 

derivatives 
o SIZE 

§ lp: the maximum number of GPU/MPI ranks 
§ lelt: the maximum number of element per GPU/MPI ranks 

To compile the code, run the compile script. The executable nekbone should be 
generated. There may be a number of warnings due to inconsistent common 
block structures. To run a simulation, move to the test directory, copy the 
compiled executable and run the execute script. The execute script may require 
updating as the running method can be system-dependent. The current version 
of this script uses the number and type of input/output files depending on the 
given example and is described in the README file.  

• Nek5000_ACC: Each example setup under 
ftp://ftp.mech.kth.se/pub/adam/Nek5000/CRESTA/Nek5000_ACC 
contains the complete set of files and scripts to compile and run the given 
example except the Nek5000 code, which has to be downloaded separately. 
Although other files usually do not require changes they can be modified or set 
up from scratch. To compile and run the example setup static arrays sizes have 
to be defined first (SIZE file used by Nek5000) and input files have to be 
generated. There are a number of parameters in SIZE and we refer the reader 
to 
https://nek5000.mcs.anl.gov/index.php/SIZEu for a more in-depth description.  
Every example tarball contains: 

o Directory structure 
§ src:  Nek5000 files 
§ test: directory containing input files and running script 

o Scripts 
§ makenek: Nek5000 native compilation script called by 

compile.sh 
o Files 

§ README: setup description 
§ SIZE: static array definitions for Nek5000 

Before compiling, the following files have to be updated: 
o makenek 

§ SOURCE_ROOT: the path to the NekBone sourcecodeF77 
§ F77: the name of the F77 MPI compiler 
§ CC: the name of the C MPI compiler,  
§ USR_LFLAGS: specify any desired flags 
§ IFPGIACC: Uncomment and specify PGI OpenACC derivatives 
§ IFCRAYACC: Uncomment and specify Cray OpenACC 

derivatives 
o SIZE 

§ lp: the maximum number of GPU/MPI ranks 
§ lelt: the maximum number of element per GPU/MPI ranks 

To compile the code, run the compile script. The executable nek5000 and 
compilation log compiler.out should be generated. Check log file for errors. 
There may be number of warnings due to inconsistent common block 
structures. To run a simulation, move to the test directory, copy the compiled 
executable and run the execute script. The execute script may require updating 
as the running method can be system-dependent. The current version of this 
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script uses the number and type of input/output files dependent on the given 
example and is described in the README file.  

7.3.3 External	
  links	
  
The Nek5000 homepage is located at http://nek5000.mcs.anl.gov. 

Building and using nek5000 is described at http://nek5000.mcs.anl.gov/index.php/UG 

Homepages for p4est and ParMetis are located at http://www.p4est.org/ and 
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/ respectively. 

 

7.4 Application	
  performance	
  overview	
  
In this section, we discuss the achieved performance of the CRESTA modifications of 
Nek5000. For a detailed analysis of Nek5000 performance, we refer the reader to 
deliverable D6.1.3 [5]. 

Nek5000_AMR	
  

 
Figure 7.1 Two–dimensional cut through the domain of the convected-cone problem showing the 
grid structure (black squares) and the passive scalar profile (color scale). Each element (3D cube 
depicted by a square) corresponds to the mesh of 12x12x12 grid points. 

Within CRESTA we implemented in Nek5000 all the tools necessary to dynamically 
modify the mesh structure during the simulation by changing the global number of 
elements through h-refinement, see Figure 7.1. This allows for non-conformal meshes, 
which add more flexibility to grid generation by removing e.g. the refinement 
propagation problem in the conformal meshes which lead to unnecessary elements in 
the far-field and to high aspect-ratio elements that are detrimental to iterative solver 
performance. It also allows for control of the computational error during the simulation 
by using a proper error estimator.  

We performed a number of model simulations with the AMR version of Nek5000 based 
on the convected-cone example introduced by Gottlieb and Orszag, which is the 
passive scalar transport problem. We adopted this example to 3-dimensional 
simulations evolving a sphere-shape (strong scaling) or cylinder-shape (weak scaling) 
cone according to the energy equation in Nek5000. In all the tests performed, we 
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followed advected features in the flow (the cone), which requires continuous 
adjustment of the mesh and does not converge to any time independent grid structure. 
In our simulations the mesh was regenerated every 50 Nek5000 steps. All runs were 
performed on a Cray XE6 system with the core number being power of 2 and ranging 
from 2048 up to 32,768. For an example of parallel efficiency related to weak scaling 
for a model problem, see Figure 7.2. 

 
Figure 7.2 Parallel efficiency of the simulations without (ε=1.01) and with (AMR) grid adaptation for 
non-conformal version of Nek5000. 

We found the non-conformal version of Nek5000 to be the most efficiently parallelized 
component of our code. The biggest constraint in the parallel scaling comes from the 
performance of the grid partitioner showing the partitioning from scratch strategy to be 
inefficient. This would not allow for exascale simulations in which advected flow 
features are followed, as the mesh requires continuous adjustment and does not 
converge to any time-independent grid structure. However, in the stability calculations, 
where the final mesh structure can be time-independent, costly AMR with mesh 
adaptivity turned on can be used as a pre-processing tool and non-conformal Nek5000 
solver can be used during the main simulation.  

NekBone_ACC	
  

 
Figure 7.3 The weak scaling results on the Titan supercomputer with up to 16,384 GPUs for 
NekBone (red line) and in the ideal case (black dashed line). 
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Within the CRESTA project, NekBone has been ported to multi-GPU systems using 
OpenACC compiler directives. The focus of this work is on porting the most time-
consuming routines of the NekBone to a GPU system, i.e. matrix-matrix multiplications. 
The optimized version for multi-GPU systems gives a performance of 609.8 Tflops on 
16,384 GPUs on Titan, as described in Figure 7.3. 

Nek5000_ACC	
  

 
Figure 7.4 The strong scalability for Nek5000 using 16th-order polynomial. Total number of grid 
points is 5177 M. 

Within the CRESTA project, the full Nek5000 code has been ported to a multi-GPU 
system using OpenACC compiler directives. The work focused on porting the most 
time-consuming parts of Nek5000 to the GPU system, namely the preconditioned 
iterative linear solver. The gather-scatter method with MPI operations has been 
redesigned in order to decrease the amount of data to transfer between the host and 
the accelerator. On 4096 nodes of the Titan supercomputer, the speed-up can be 
approach 1.4 times with a16th-order polynomial, see Figure 7.4. A preliminary study 
showed that overlapping of GPU kernels with host-accelerator memory transfers could 
increase the performance of the OpenACC version of Nek5000. This will be part of 
future research. 
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