

Daniel Holmes EPCC, University of Edinburgh

Message Passing and PGAS

Key Objectives

- Address the scalability (performance and memory consumption) problem for MP and PGAS models.
- Propose GPI as the European PGAS approach to exascale.
- Design a hybrid MP-PGAS programming model that combines the best features of the two approaches.
- Prepare two applications to exascale by redesigning and implementing their communications kernels.

State of the Art and Beyond

- Two programming models have demonstrated potential for exascale performance: MP and PGAS.
- Certain MPI collective operations are not scalable.
 - Revise MP algorithms for scalable collectives.
- PGAS approach has potential for exascale, but it requires considerable changes in codes to use it.
 - Deploy a PGAS library (GPI) that does not require major restructuring in two real-world codes.
 - Design an MPI implementation based on the PGAS approach to combine advantages of MP and PGAS.
- Several programming models for moving data between host and accelerators are being proposed.
 - Investigate the potential of new approaches for diverse memory spaces.

Rationale for EPiGRAM

- Message Passing programming model is the most used approach on peta-scale systems.
- PGAS approach has potential to be an exascale programming model.
- Both approaches have limitations and they will not scale at exascale.

EPiGRAM Vision

We will introduce new disruptive concepts in MP and PGAS programming models to fill the technological gap between petascale and exascale era in two ways:

- Innovative and disruptive algorithms will be used in both MP and PGAS approaches.
- We will combine the best features of MP and PGAS programming models, by developing and implementing an MP interface using a PGAS library as communication substrate.

A Window of Opportunity

- We have the chance to take a leading role in international MP programming model research.
- By extending and improving GPI to exascale we will consolidate the role of GPI and establish it as the European PGAS approach.
- EPiGRAM can complement the European CRESTA, DEEP, and Mont-Blanc exascale projects.
 - by exploring additional innovative PGAS approaches that go well beyond those considered in the current CRESTA project
 - by investigating efficient MP mechanisms that might useful for hybrid Cluster-Booster architecture in DEEP
 - by studying and analyzing one-sided communication approaches for diverse memory spaces such as the one in hybrid ARM-GPU systems in Mont-Blanc.

Exascale Message Passing

- Objectives:
 - Investigate new, low-overhead, MP concepts and algorithms
 - initial focus on collectives
 - also threading, fault tolerance
 - Develop concrete specifications
 - go beyond the current standard where it limits scalability (e.g. persistent collectives).

Exascale PGAS

- Objectives:
 - To investigate current limitations of traditional PGAS.
 - To propose concrete solutions to current PGAS limitations.
 - To increase scalability of collective operations and synchronization in GPI.
 - To support fault-tolerance in GPI.
 - Exploitation of diverse and hierarchical memory spaces in PGAS.

PGAS-based MPI

- Objectives:
 - Implement and evaluate efficient message passing libraries on top of RDMA operations
 - Implement and evaluate collective operations on top of RDMA operations
 - Prototype implementation of MPI endpoints proposal
 - Develop recommendations for MPI to allow efficient implementation on top of RDMA
 - Develop recommendations for RDMA hardware
 EPiGRAM

Applications

• Objectives:

- Use of the exascale MP, PGAS and PGASbased MPI software in two real-world applications: Nek5000, iPIC3D
- Analyze the performance of newly developed communication kernels in Nek5000 and iPIC3D
- Provide feed-back and guidance to the development of exascale programming models

Standardisation and Dissemination

• Objectives:

- Participate and contribute to standardisation committees (especially MPI Forum).
- Establish collaboration with EC projects and initiatives.
- Disseminate knowledge from EPiGRAM.

