

Collaborative Research into Exascale Systemware, Tools and Applications

Vampir and CRESTA Tools

Tobias Hilbrich (Technische Universität Dresden) tobias.hilbrich@tu-dresden.de

Challenges for Exascale Tools [Selection]

Hels Design

CRESTA Performance/Correctness Tools

Tool Workflows in a Nutshell

Hel's Design

Scalability Challenge		Scalability
Allinea DDT/MAP	Vampir	MUST
 Highest scale of use: 700K cores Both tools same tree infrastructure Features scale System: Blue Waters [Cray] 	 Highest scale of use (VampirTrace): 200K cores System: Jaguar [Cray] Technology: I/O Forwarding (IOFSL) ScoreP (current environment): SionLib as Technology 	 Highest scale of use: 16K cores Tree infrastructure to distribute and offload correctness analysis System: Juqueen [BG/Q]

Paradigm Challenge – Support [tentative list]

- Allinea DDT:
 - MPI, threads, OpenSHMEM, Co-Array Fortran, UPC, OpenACC, CUDA, Xeon Phi, ...
- Allinea MAP:
 - MPI, threads, OpenSHMEM
- Vampir (with ScoreP):
 - MPI, threads, OpenSHMEM, Co-Array Fortran (DMAPP), OpenACC (CUDA), CUDA, OpenCL
- MUST:
 - MPI
 - Ongoing: threads (different project), investigation into OpenSHMEM/GASPI (CRESTA)

6

Paradigms

8

Power Challenge

- ScoreP (Vampir suite):
 - Can measure energy consumption as counters
 - Plugin interface to support various counters
 - XC30 energy counter support

Resiliency

- Tools (DDT, MAP, Vampir, ScoreP, MUST) will need to adapt to failures
- Tools with tree infrastructures must protect their own tool services
- Tools should failures and include them in their reports:
 - Impact on performance
 - Impact on correctness

Resiliency