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Engineering Problems 
on EXASCALE architectures

Very complex infrastructure needed for 

• Pre/Post Processing
• Doing HPC calcuations
• “steering the simulation”

Actual calculations might even not be the most time intensive 
part!!

• Huge code base  long development times  must be 
futureproof but also very standard and not vendor-locked, 
example OpenMP, MPI, OpenCL, OpenACC … 

• Portability is a MUST, even to windows!!
• Need to leverage OO techniques to manage software 

complexityC++  Industrial grade compiler needed. 
Currently GCC, Clang, Intel, MSVC

• Use a scripting language as “main” to allow flexibility 
Python



Application bottlenecks

Applications tend to be severely Bandwidth Limited
• Linpack performance does not faithfully predict application 

performance
• Stream or HPCG benchmarks much more relevant  Please 

consider optimizing for this instead for Linpack, that would 
be much more significant for engineering applications (end 
hence industry) than raw FLOPs

• Lots of parallelism available, although quite irregular 
 it is possible to run on GPUs, however the type of 
calculations is non-optimal (so far my personal experience 
was quite deceiving)



Epetra (right) and HPCG (left) 
benchmarks

 sparse matrix times 8-column multivector
 matrix size= (500,500)

 results averaged between different grids of processors
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CSUC UV 1000 CLuster: Benchmarks
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CSUC UV 1000 CLuster: Benchmarks
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Profiling & Debugging

We still miss a good profiler to assess the performance of our 
algorithms.

Very problematic since the profiler needs:
• Support for multiple shared libraries loaded from python
• Support both OpenMP and MPI
• Shall not need annotations in the code. (Not feasible to 

annotate large code bases!!)

Debugging is also quite painful, due to the mix of python and 
C++



Programming paradigms 
to address new machines?
We need to choose a programming paradigm to address 
modern/future machines

Requirements:
• Compiler shall have industrial grade C++ support.  In 

particular must be able to compile Boost and Trilinos and 
have good support for “template magic”

• Shall be portable to any OS (including Windows!!!!!)
• Shall NOT be vendor-locked
• Shall allow addressing accelerators
• Ideally shall allow OO programming (if this is not the case 

application will be limited inside our code)

As of now, the programming paradigms that comply with this 
requirements are
• OpenMP 4.0/OpenACC
• TBB (Threading Building Blocks)
• OpenCL (very very very verbose and tedious to program)

Suggestions are welcome…



Open Questions:

Question 1:
Apparently a new technology can be found on the shelves. 
AMD HSA/hUMA shall, according to marketing info, allow to 
address GPUs in a more transparent way. Will this maintain 
the promise of OO programming on GPU? If so it would be 
a real revolution… could anyone comment on this

Question 2:
Does OpenMP 4.0 allow (in principle) OO programming on 
GPUs? No implementation out to test…
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