
Some “User Remarks”
NUMEXAS PROJECT
– Kratos Subproject -

Dr. Riccardo Rossi
Dr. Pooyan
Dadvand
Dr. Cecilia Soriano

Engineering Problems
on EXASCALE architectures

Very complex infrastructure needed for

• Pre/Post Processing
• Doing HPC calcuations
• “steering the simulation”

Actual calculations might even not be the most time intensive
part!!

• Huge code base  long development times  must be
futureproof but also very standard and not vendor-locked,
example OpenMP, MPI, OpenCL, OpenACC …

• Portability is a MUST, even to windows!!
• Need to leverage OO techniques to manage software

complexityC++  Industrial grade compiler needed.
Currently GCC, Clang, Intel, MSVC

• Use a scripting language as “main” to allow flexibility
Python

Application bottlenecks

Applications tend to be severely Bandwidth Limited
• Linpack performance does not faithfully predict application

performance
• Stream or HPCG benchmarks much more relevant  Please

consider optimizing for this instead for Linpack, that would
be much more significant for engineering applications (end
hence industry) than raw FLOPs

• Lots of parallelism available, although quite irregular
 it is possible to run on GPUs, however the type of
calculations is non-optimal (so far my personal experience
was quite deceiving)

Epetra (right) and HPCG (left)
benchmarks

 sparse matrix times 8-column multivector
 matrix size= (500,500)

 results averaged between different grids of processors

Haga clic para modificar el estilo de texto del patrón
Segundo nivel

Tercer nivel
Cuarto nivel

Quinto nivel

 HPCG

Haga clic para modificar el estilo de texto del patrón
Segundo nivel

Tercer nivel
Cuarto nivel

Quinto nivel

CSUC UV 1000 CLuster: Benchmarks

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

Number of cores

G
F

LO
P

/s

HPCCG Benchmark

CSUC UV 1000 CLuster: Benchmarks

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

M
P
I

Number of cores

G
F
LO

P
/s

EPETRA/trilinos Benchmark

Profiling & Debugging

We still miss a good profiler to assess the performance of our
algorithms.

Very problematic since the profiler needs:
• Support for multiple shared libraries loaded from python
• Support both OpenMP and MPI
• Shall not need annotations in the code. (Not feasible to

annotate large code bases!!)

Debugging is also quite painful, due to the mix of python and
C++

Programming paradigms
to address new machines?
We need to choose a programming paradigm to address
modern/future machines

Requirements:
• Compiler shall have industrial grade C++ support. In

particular must be able to compile Boost and Trilinos and
have good support for “template magic”

• Shall be portable to any OS (including Windows!!!!!)
• Shall NOT be vendor-locked
• Shall allow addressing accelerators
• Ideally shall allow OO programming (if this is not the case

application will be limited inside our code)

As of now, the programming paradigms that comply with this
requirements are
• OpenMP 4.0/OpenACC
• TBB (Threading Building Blocks)
• OpenCL (very very very verbose and tedious to program)

Suggestions are welcome…

Open Questions:

Question 1:
Apparently a new technology can be found on the shelves.
AMD HSA/hUMA shall, according to marketing info, allow to
address GPUs in a more transparent way. Will this maintain
the promise of OO programming on GPU? If so it would be
a real revolution… could anyone comment on this

Question 2:
Does OpenMP 4.0 allow (in principle) OO programming on
GPUs? No implementation out to test…

	Some “User Remarks” NUMEXAS PROJECT – Kratos Subproject -
	Slide 2
	Slide 3
	Epetra (right) and HPCG (left) benchmarks
	CSUC UV 1000 CLuster: Benchmarks
	CSUC UV 1000 CLuster: Benchmarks
	Slide 7
	Slide 8
	Slide 9

