
Some “User Remarks”
NUMEXAS PROJECT
– Kratos Subproject -

Dr. Riccardo Rossi
Dr. Pooyan
Dadvand
Dr. Cecilia Soriano

Engineering Problems
on EXASCALE architectures

Very complex infrastructure needed for

• Pre/Post Processing
• Doing HPC calcuations
• “steering the simulation”

Actual calculations might even not be the most time intensive
part!!

• Huge code base long development times must be
futureproof but also very standard and not vendor-locked,
example OpenMP, MPI, OpenCL, OpenACC …

• Portability is a MUST, even to windows!!
• Need to leverage OO techniques to manage software

complexityC++ Industrial grade compiler needed.
Currently GCC, Clang, Intel, MSVC

• Use a scripting language as “main” to allow flexibility
Python

Application bottlenecks

Applications tend to be severely Bandwidth Limited
• Linpack performance does not faithfully predict application

performance
• Stream or HPCG benchmarks much more relevant Please

consider optimizing for this instead for Linpack, that would
be much more significant for engineering applications (end
hence industry) than raw FLOPs

• Lots of parallelism available, although quite irregular
 it is possible to run on GPUs, however the type of
calculations is non-optimal (so far my personal experience
was quite deceiving)

Epetra (right) and HPCG (left)
benchmarks

 sparse matrix times 8-column multivector
 matrix size= (500,500)

 results averaged between different grids of processors

Haga clic para modificar el estilo de texto del patrón
Segundo nivel

Tercer nivel
Cuarto nivel

Quinto nivel

 HPCG

Haga clic para modificar el estilo de texto del patrón
Segundo nivel

Tercer nivel
Cuarto nivel

Quinto nivel

CSUC UV 1000 CLuster: Benchmarks

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

Number of cores

G
F

LO
P

/s

HPCCG Benchmark

CSUC UV 1000 CLuster: Benchmarks

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

M
P
I

Number of cores

G
F
LO

P
/s

EPETRA/trilinos Benchmark

Profiling & Debugging

We still miss a good profiler to assess the performance of our
algorithms.

Very problematic since the profiler needs:
• Support for multiple shared libraries loaded from python
• Support both OpenMP and MPI
• Shall not need annotations in the code. (Not feasible to

annotate large code bases!!)

Debugging is also quite painful, due to the mix of python and
C++

Programming paradigms
to address new machines?
We need to choose a programming paradigm to address
modern/future machines

Requirements:
• Compiler shall have industrial grade C++ support. In

particular must be able to compile Boost and Trilinos and
have good support for “template magic”

• Shall be portable to any OS (including Windows!!!!!)
• Shall NOT be vendor-locked
• Shall allow addressing accelerators
• Ideally shall allow OO programming (if this is not the case

application will be limited inside our code)

As of now, the programming paradigms that comply with this
requirements are
• OpenMP 4.0/OpenACC
• TBB (Threading Building Blocks)
• OpenCL (very very very verbose and tedious to program)

Suggestions are welcome…

Open Questions:

Question 1:
Apparently a new technology can be found on the shelves.
AMD HSA/hUMA shall, according to marketing info, allow to
address GPUs in a more transparent way. Will this maintain
the promise of OO programming on GPU? If so it would be
a real revolution… could anyone comment on this

Question 2:
Does OpenMP 4.0 allow (in principle) OO programming on
GPUs? No implementation out to test…

	Some “User Remarks” NUMEXAS PROJECT – Kratos Subproject -
	Slide 2
	Slide 3
	Epetra (right) and HPCG (left) benchmarks
	CSUC UV 1000 CLuster: Benchmarks
	CSUC UV 1000 CLuster: Benchmarks
	Slide 7
	Slide 8
	Slide 9

